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A SYSTEM OF QUADRICS DESCRIBING THE ORBIT

OF THE HIGHEST WEIGHT VECTOR

WOODY LICHTENSTEIN

Abstract. Let G be a complex semisimple Lie group acting irreducibly on a finite

dimensional vector space V. A simple method is given for constructing a system of

quadratic equations which defines the orbit of the highest weight vector in the

projective space PV.

1. The Borel-Weil Theorem gives a method for constructing all irreducible

representations of a compact connected semisimple Lie group G. Any such represen-

tation arises as the action of G on the space of homogeneous polynomials of fixed

degree restricted to a (/-homogeneous projective variety. (Of course, since it does not

really make sense to restrict a homogeneous polynomial to a projective variety °V, the

vector space in question is usually described as the space of holomorphic sections of

a holomorphic line bundle over T.) The results of Wang [11], Lichnerowicz [5] and

Borel and Weil [8] show that any irreducible projective variety °\f with a finite

fundamental group and a transitive group action must be of the form CV= Gc/Pc

where Gc is a connected complex semisimple Lie group (the complexification of the

compact group G) and £c is a parabolic subgroup (a subgroup containing a maximal

connected solvable subgroup). Furthermore every space Gc/Pc can be described as

the orbit of the line spanned by the highest weight vector in a finite dimensional

irreducible representation of Gc.

All the varieties Gc/Pc may be easily constructed once one understands those for

which Pc is a maximal subgroup. (These correspond to the orbits of the highest

weight vectors in fundamental representations.) For example, when Gc = SL(«,C)

the fundamental representations occur on the spaces A*(C"), k— \,...,n— 1,

where Gc acts naturally on C". The orbit of the highest weight vector in £ A *(C")

—the corresponding projective space—is the Grassmann manifold Gk „ of rc-planes

in «-space. It is well known that the variety Gk „ C P A k(C) is cut out by a system

of quadrics, the Pliicker equations [3]. With this as a starting point it is not hard to

show that for every fundamental representation of a classical group the orbit of the

highest weight vector is cut out by a system of quadrics.

For the exceptional groups it is more difficult to determine the corresponding

varieties so explicitly. Nevertheless, in many cases it is known that these varieties are

cut out by quadrics. In particular, the orbit of the highest weight vector in the 27
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dimensional representation of £6 can be identified with the Cayley projective plane

[1,9,10] which in turn can be identified with the rank 1 elements in the Jordan

algebra of hermitian 3X3 Cayley matrices [4]. The condition imposed by rank 1 is

that all 2 X 2 minors vanish. This is a system of quadrics. Freudenthal has also given

a system of quadrics defining the orbit of the highest weight vector in the 56

dimensional representation of £7 [2].

In this note a simple method is given for constructing a system of quadrics

defining the orbit of the highest weight vector in any irreducible representation.

I would like to acknowledge that the conjecture that every Gc/Pc is cut out by

quadrics was arrived at in conversations with Harsh Pittie.

2. Let G be a connected complex semisimple Lie group of rank / with Lie algebra g

and universal enveloping algebra %(g). Let Vx be a C-vector space on which G acts

via the finite dimensional irreducible representation with highest weight X. Let fj C g

be a Cartan subalgebra, let {Xa) be the set of positive root vectors (for some choice

of ordering of the roots) and let {X_a} be the negative root vectors, chosen so that

B(Xa, X_a) = 1 where B is the Killing form. Let H„ i — 1,...,/, be a £-orthonormal

basis of i). Set

Q..= 2(xax_a + x_axa)+ÍH2,
a>0 i=l

the Casimir operator in %(g). In fact fl is in the center of the enveloping algebra

and therefore acts on any irreducible representation as multiplication by a scalar.

Specifically, by checking on the highest weight vector, one can see easily that on Vx,

fi acts as multiplication by (X + 8, X + 8) — (8, 8)= (X + 28, X) where 8 is half

the sum of the positive roots and < • , • > is the Killing form translated to the dual

space b* of b.

Theorem. The system of quadrics

(1) Q(v®v) = (2X + 28,2X)(v®v)

characterizes the orbit of the highest weight vector.

[Note that both sides of (1) are elements of Vx® Vx (symmetric tensor square of

Vx) and thus if dx = dim Vx, (1) may be thought of as a system of (dx + \)dx/2

quadratic equations in the dx components of v.]

Proof. The system (1) certainly holds when v is the highest weight vector vx since

then vx ® vx is in a subspace of Vx® Vx which transforms under G according to the

irreducible representation with highest weight 2A. But then (1) must hold everywhere

on the G-orbit 0^ of vx. Let ir: Vx — {0} -* PVX be the canonical map to projective

space. Since G acts transitively on the variety <Y= it(6v ), T is nonsingular and

contained in 7r(<fti) where % is the algebraic set defined by (1). By calculation of the

tangent space of °\fat tr(vx) it can be shown that dimcV= # positive roots a such

that (A, a) =£ 0, = nx. If we rewrite (1) in the form F(v) = 0 where £: Vx -> Vx® Vx

then we can show V — tr(6¡í) if we can show that Rank DF(vx) > dx — 1 — nx. The

reason this suffices is as follows.
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First, % is a union of G-orbits, and, if x E Vx is any Vector with G-orbit 6X, then

^(0^) contains tr(vx) in its closure. [Since Vx is irreducible, every orbit 6X spans Vx,

so we may assume x = cvx + y with c ¥= 0 and y a linear combination of weight

vectors of weight less than A. Now choose H Eb such that X(H) > 0 and a(H) > 0

for all positive roots a. Then Lim,J00 e~'X(H\e'H ■ x) — cvx.]

Now either Rank DF is constant on some neighborhood of vx in %, or there are

points arbitrarily near vx in % where Rank £»£ > Rank DF(vx) 3= dx — 1 — nx.

The second case is impossible since any orbit of a point near vx will have

dimension > nx+ 1. In the first case we may apply the implicit function theorem to

conclude that there is a neighborhood % of ir(vx) such that w(^l) ) n % is a smooth

connected wA-dimensional manifold containing the smooth «A-dimensional manifold

Tn %. It follows that the component of 7r(<¥) through vr(vx) is T. But the above

argument concerning orbits in PVX shows that any other component of irCW) would

have to intersect %, which is impossible, so that w(^lf) is irreducible and irC'uf) = T.

We proceed to rewrite (1) as

ßü ® u + 0 ® fiu + 2 2 (*«« ® *-«u + *-«u ® XcP)
a>0

I

+ 2 j H)c ® tf,u - <2A + 25,2A>(ü ® ©) = 0.
/=i

Using fiu = (X + 26, X)v this simplifies to

-<A, A>(t> ® o) + 2 (Xjo ® X_„t; + JT_ao ® *»
a>0

(2)
+ 2 H,v®Hlv = F(v) =0.

i=i

Finally, we calculate DF(vx): Vx ̂  Vx® Vx.

it \t=Av* + '*) = -<X' AX0* ® w + w ® O

+    2   (*a»®*-«DA+*-««>A®*>)
a>0

/

í=i

Take w E KA to be a weight vector of weight ft. Then

D£(uA)(w) = (A, ¡i - X)(vx ® w + w ® ox)

(3) + 2 (Xaw ® *_aüA + * Qt>x ® À».
«>o

The right-hand side of (3) is a weight vector in Vx® Vx of weight X + ¡i. The

coefficient of vx <8> w + w <S> vx is nonzero for p. # A. If the weight u is not of the

form A — a for any positive root a, then the sum term on the right-hand side of (3) is

linearly independent from vx <8> w + w ® vx. If ju is of the form A — « and w is
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orthogonal to X_avx then the same statement holds. Since nx is the number of

weights of Vx of the form A — a, it is now easy to see that there are at least

dx — 1 — nx linearly independent vectors in the image of DF(vx).
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