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ON THE LIOUVILLE THEOREM FOR HARMONIC MAPS

HYEONG IN CHOI

Abstract. Suppose M and N are complete Riemannian manifolds; M with Ricci

curvature bounded below by —A, A > 0, N with sectional curvature bounded above

by a positive constant K. Let u: M — N be a harmonic map such that u(M)C

BR(yn). If B„(y0) lies inside the cut locus of yn and R < ■n/"b¡K, then the energy

density e( u ) of u is bounded by a constant depending only on A, K and R. If A = 0,

then « is a constant map.

1. Introduction. Suppose M is a complete Riemannian manifold with Ricci

curvature bounded below by a constant —A, A > 0. Let N be a complete Rieman-

nian manifold with sectional curvature bounded above by a positive constant K. If

u: M -> N is a smooth map, we denote the energy density of u by e(u). We will

prove the following theorem.

Theorem. Let u: M -» N be a harmonic map such that u(M) E BR(y0) where

BR(y0) is the geodesic ball of radius R centered at y0 in N. If BR(y0) lies inside the cut

locus ofy0 and R < ■n/2'fK, then e(u) is bounded by a constant depending only on A, K

and R. If, furthermore, A = 0, i.e., M has nonnegative Ricci curvature, then u is a

constant map.

Actually we have a more precise estimate for e(u). (See formula (11) of §3.)

This type of theorem was first proved by S.-T. Yau [4] for harmonic functions.

Generalizing Yau's theorem, S.-Y. Cheng [1] proved our theorem for harmonic maps

assuming N is simply connected with nonpositive sectional curvature. In fact,

Cheng's result is more general in the sense that one could allow a certain growth of

B(a), where B(a) — sup{Jv(t/(.v), v0): .v £ Ba(x0)} for some point x0 E M, i.e.,

lim supa_oc B(a)/a — 0.

On the other hand, the Dirichlet problem for harmonic maps was first solved by

R. Hamilton in the case where N is simply connected with nonpositive sectional

curvature. This was generalized by Hildenbrandt, Kaul and Widman [3] who proved

that the Dirichlet problem can be solved if we only assume u(M) E BR(y0) with the

same condition on BR(yQ) as in our theorem. In view of these two facts, it is natural

to try to generalize Cheng's result to our situation. This is the motivation of our

paper.

Our result is sharp as the following example shows. Let S" be the sphere of

dimension « with constant sectional curvature K. It is easy to see that the inclusion
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map /': S"-1 -» S" as the equator is harmonic, but clearly S"~x lies in the closed ball

of radius tr/2/K centered at the north pole.

I would like to thank Professors R. Schoen and H. Wu for encouragement and

many helpful discussions.

2. Preliminaries. We will employ Cheng's method of proof with minor modifica-

tion. For the sake of completeness, we list some of the definitions and well-known

formulas.

Choose local orthonormal frames {ea} in a neighborhood of p E M and {/} in a

neighborhood of u(p) EN. Let {0a} and {w¡} be the dual coframes of {ea} and {/}

respectively. The connection forms {0aß} and {w¡j} are defined by the following

equations:

Ma = 2*aß**ß>       0aß + 0ßa = O,
ß

dw¡ = 2 wij A wj »       w,j + wj¡ = 0.

j

Define uia by the equation

U*W¡ = 2" Ja-
a

The energy density e(u) of u defined to be ^iaufa. Also define the covariant

derivatives uiaß by the equation

2 »iaßOß = duia + 2 UjaU*Wj, + 2 uiß0ßa.
ß j ß

It is well known that the condition, 2„ uiaa = 0 for all i, is equivalent to saying that

u is harmonic. The following Bochner type formula is also well known

(1) 2&(u) =     2    «faß -     2    Rijkl«ia«jß«ka«lß +     2    Kaß«ia«iß^
i.a.ß i,j,k, a,ß,i

l,a,ß

where R,,kl is the curvature tensor of N, and Kaß is the Ricci tensor of M.

Let <j> be a smooth function defined on N. Define <p, and <f>u by the following

equations:

d<t> = ^l4>iwi,        2<^ = rf</>,.+ 2^,.
' j j

One can also define the Hessian tensor D2<p at a point q E N as follows. For any X,

YENq, define D2<p(X, Y) = X(Y<¡>) - (DxY)<f>, where X and Y are extended

arbitrarily to vector fields in a neighborhood of q. DXY denotes the covariant

derivative of the Riemannian connection of N. It is easy to check D2<j> is a tensor and

ö2«j>(/„ fj) = <Pij. We also have A„<¿> = 2, <í»„,

Let y be a strictly convex function defined in a neighborhood of a point

q — u(p) E N, p E M. Suppose \(q) is the lower bound of the eigenvalues of the

Hessian tensor (<f>,y) at q, then we have

(2) A«(*°«)t=   2 <t>u"iaUja>H^)e(u).
i.j.a
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It is also easy to check the following:

(3) \de(u)\2<4e(u)   2   ufaß,
i.a.ß

(4) \d{*oU)\2<\d4,\2e(u).

3. Proof of the theorem. Multiplying the metric tensor by a suitable constant we

may assume the upper bound of the sectional curvature of TV to be 1 throughout this

section.

Let p be the distance function from yQ in N. Define <¡> = 1 — cos p.

Lemma. On BR(y0), (^) > (cospX«y).

Proof. We will prove that the equality holds on S", the sphere of curvature = 1;

then the lemma follows by applying the Hessian comparison theorem of Greene and

Wu [2, p. 19]. So for the rest of the proof of this lemma, we assume N = S".

Applying Proposition 2.20 of [2, p. 30],

D2p = ^(dS2-dp®dp)
sin p v '

where dS2 is the metric tensor of N. It is easy to check that D2xp(p) = xp'(p)D2p +

xp"(p) dp ® dp for any smooth function xp: R -» R. Thus for <j> = 1 — cos p, we get

772<i> = (cos p)dS2, i.e., (</>„) = (cos p)(50).   Q.E.D.

Let r be the distance function from x0 in M. Since R < ir/2, we can choose a

constant b such that <t>(R) < b < 1 on BR(y0). Consider the function 3> =

(a2 — r2)2e(u)/(b — </> ° u)2 defined on the geodesic ball Ba(x0) in M. Since 4»

vanishes on the boundary of Ba(x0), we may assume that Í» attains its maximum at

an interior point p, and we may assume e(u) # 0 at p. We may also assume that r is

smooth near p by the argument given in Cheng's paper [1]. Differentiating log 4>, we

get, at p,

2dr2      de(u)     2¿(y°u)
(5) o = ̂ 4 + ̂ rT +

a2-r2 e(u)       b - <p° u '

(6)

Q^-2Ar2   |    -2\dr2\2   |  Ae(«)      |^e(«)|2

a2-/-2      (a2-r2)2       *(") e(u)2

2A(4>°«) + 2\d(<p°u)\2
2b-<pou (b-^ou)

Using (1), (3) and the curvature bounds, we get

<i\ M") ^ 1 \de(u)\2

(7) "isr^-^f-^-)-"-
From (5), we get

(8) l^(»)!2 «;   4I^2!2    +    SI^M^o«)!    + 4 [rfí> o b) ¡a

e(M)2        (a2-r2)2      (a2-/"2)(è-<»oM)       (ft - ^ o M)2
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From (2) and the lemma, we get A(<í> o u)> (cos p)e(u). Applying this fact, (7) and

(8) to (6), we obtain

-2Ar2        4 | dr2 \2 4| dr2 11 d(<p ° u) \
0>

(9)
a2~r2      (a2-r2)2      (a2 - r2)(b - <l> ° u)

~  /   \     ~ .        2 cos p     .   ,
-2e(u) -2A+-——e(u).

b — <t> ° u

By the Laplacian comparison theorem [2, p. 26], there is a constant C, > 0 such that

Ar2 «s C,(l + r). By the Gauss lemma, | dr | = 1. Also by (4) and the fact \d<p\ =

sin p < 1, we get | d(<p ° u) |< \je(u). It is easy to check that there is a constant

C2 > 0 such that

-2 + -^->C2.
b — tp ° u

Hence we obtain from (9)

0 > -2A -
2C,(l+r) I6r:

a2-'2 (a2-r2)2
(10)

-T~2-2yh     I      ,{^)+C2e(u).
(a   — r )(b — <p ° u)

It is easy to see that if ax2 — bx — c < 0 with a, b, c all positive, then

x < ma\{2b/a,   2yjc/a }.

Thus we get, atp,

e(u) < 4max^
64r2

{C2(a2-r2)2(b-4>oU)2

(11)

2^1       2C,(1 +r) I6r2

C2      C2(a2-r2)      c2(a2-r2)2\

From this we can obtain the upper bound of $, and it can be easily concluded that

(11) is true at every interior point of Ba(x0). Pick any point x E M, thus r(x) is

fixed, and taking sufficiently large a and letting a -» 00, we have e(u) < %A/C2. If

A = 0, then e(u) = 0, i.e., m is a constant map.
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