A NOTE ON
$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

XUN OIAN YANG

ABSTRACT. Denoting by S(N) the number of natural numbers n less than N for which

$$\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$$

has no solutions in positive integers, we show that $S(N) \ll N/\log^2 N$.

P. Erdös conjectured that the equation

(1)
$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

has positive integer solutions x, y, z for every natural number $n \ge 2$. This problem has attracted the attention of Straus, Bernstein, Shapiro, Oblath and Yamamoto (see [1] for precise references); Chao Ko, Chi Sun and S. J. Chang [2]; and R. W. Jollensten [3]. The best result hitherto obtained is that (1) holds for $n < 1.1 \times 10^7$.

In [4], W. A. Webb proved that (1) holds for almost all natural numbers. More precisely, let S(N) denote the number of n's (n < N) for which (1) has no solution. Then

$$S(N) \ll \frac{N}{\log^{7/4} N}.$$

Webb's proof is based on Selbeg's sieve method, and is quite complicated. Webb remarked that his technique could be used to improve the exponent from 7/4 to 2. It is the aim of this note to give a simple proof of this slightly sharper result.

THEOREM A. $S(N) \ll N/\log^2 N$.

The proof is based on the following theorem [5, p. 70].

THEOREM B. Let g be a natural number. Let a_i and b_i (i = 1, 2, ..., g) be pairs of integers satisfying $(a_i, b_i) = 1$ (i = 1, 2, ..., g) and define

$$E = \prod_{i=1}^g a_i \prod_{1 \leq r \leq s \leq g} (a_r b_s - a_s b_r) \neq 0.$$

Received by the editors March 2, 1981.

1980 Mathematics Subject Classification. Primary 10B25; Secondary 10H30.

Let y and x be real numbers satisfying $1 \le y \le x$. Further, let \mathfrak{P} be a set of primes for which there exist constants δ and A such that

$$\sum_{\substack{p < y \\ p \in \mathfrak{P}}} \frac{1}{p} \ge \delta \log \log y - A.$$

Then

$$|\{n: x - y < n \le x, ((a_i n + b_i), \mathfrak{B}) = 1 \text{ for } i = 1, 2, \dots, g\}|$$

$$\ll \prod_{\substack{p \mid E \\ p \in \mathfrak{B}}} \left(1 - \frac{1}{p}\right)^{\rho(p) - g} \frac{y}{\log^{\delta g} y}$$

where $\rho(p)$ denotes the number of solutions of

$$\sum_{i=1}^{g} (a_i n + b_i) \equiv 0 \pmod{p}$$

 $\sum_{i=1}^g (a_i n + b_i) \equiv 0 \pmod{p}$ and where the constant implied by the \ll notation depends on g and A only.

PROOF OF THEOREM A. Obviously,

$$\frac{4}{n} = \begin{cases} \frac{1}{n(k+1)k} + \frac{1}{n(k+1)} + \frac{1}{vk}, & n = (4k-1)v, \\ \frac{1}{nk} + \frac{1}{nkv} + \frac{1}{vk}, & n+1 = (4k-1)v, \\ \frac{1}{nk} + \frac{1}{nk(kv-1)} + \frac{1}{kv-1}, & n+4 = (4k-1)v, \\ \frac{1}{nk} + \frac{1}{k(kv-n)} + \frac{1}{n(kv-n)}, & 4n+1 = (4k-1)v. \end{cases}$$

Hence, if one of the four numbers n, n + 1, n + 4, 4n + 1, has a factor of the form 4k-1, then (1) holds.

Thus, we may choose

$$\mathfrak{P} = \{ p \colon p \equiv -1 \pmod{4} \}, \qquad y = x, g = 4,$$

and

$$\prod_{i=1}^{4} (a_i x + b_i) = x(x+1)(x+4)(4x+1)$$

in Theorem B and obtain,

$$E = 2^4 \cdot 3^3 \cdot 5 \neq 0$$
, $\rho(3) = 2$,

and

$$\prod_{\substack{p \mid E \\ p \in \mathfrak{B}}} \left(1 - \frac{1}{p}\right)^{\rho(p) - g} = \left(\frac{2}{3}\right)^{-2}.$$

By Mertens' result [5, p. 35],

$$\sum_{\substack{p < x \\ p \equiv l \pmod{k}}} \frac{1}{p} = \frac{1}{\varphi(k)} \log \log x + O_k(1), \qquad (l, k) = 1.$$

Taking $\delta = \frac{1}{2}$, we obtain Theorem A directly from (2).

REFERENCES

- 1. L. J. Mordell, Diophantine equations, Academic Press, New York and London, 1969.
- 2. Chao Ko, Chi Sun and S. J. Chang, On the equation 4/n = 1/x + 1/y + 1/z, J. Sichuan Univ. (Science) 3 (1964).
- 3. Ralph W. Jollensten, A note on the Egyptian problem, Proceedings of the Seventh Southeastern Conference on Combinatorics, Graphs, and Computing (Louisiana State Univ., Baton Rouge, La., 1976), pp. 351-364.
- 4. William A. Webb, On 4/n = 1/x + 1/y + 1/z, Proc. Amer. Math. Soc. 25 (1970), 578-584. MR 4, 1639.
 - 5. H. Halberstam and H. E. Richert, Sieve methods, Academic Press, New York, 1974.

DEPARTMENT OF MATHEMATICS, SOUTH WEST TEACHER'S COLLEGE, CHONGQING, SICHUAN, PEOPLE'S REPUBLIC OF CHINA