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ON U,-NUMBERS
K. ALNIAGIK

ABSTRACT. In this paper we shall give some examples of U,-numbers by using the
continued fraction expansions of algebraic numbers of degree m > 1.

DErFINITION.! Let £ be a complex number and m (m > 1) a positii'e integer. The
number { is called a U, -number if for every w >0 there are infinitely many
algebraic numbers y of degree m with

0<|¢—y|<H(y)™"

and if there exist constants C > 0 and K depending only on § and m such that the
relation

¢ — 81> cH(B) ™" |
holds for every algebraic number B of degree < m. (H(y) is the maximum of the
absolute value of coefficients of the minimal polynomial of v [1, 2, 7, 8).)

THEOREM. Let a (a > 1) be a real algebraic number of degree m (m > 1) with
continued fraction expansion
(1) a= (ay,a,,a,,...,a,,...)
and p,/q, (n =0,1,...) be nth convergent of the continued fraction (1). Let {r;} and
{s;} (=0,1,...) be two sequences of nonnegative integers with the following proper-
ties

(2) 0=rR<s<n<s<np<s5<r<s5<-- (rys1 =5, 2),
(®) (@ lim (o8g,/logq,) =0, (b) T (logq,. /logg,) <oo.

Finally we define positive integers b, (j = 0,1,2,...) by
a, ifr,<j<s,(n=0,1,...)
Fpey—1
(4) b =1y |1<y<Kgl, 3 (aj—-vj)zaéo
j=s,+1

ifs,<j<r,,,(n=0,1,..)
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"We note that we have, in fact, defined a Koksma U*-number instead of a Mahler UZ-number.
However, it is known that they are the same (see [6, 10]).
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where K|, K, are positive integers. Then the real number § with continued fraction
expansion

§=(by, by,...,b,,...)
is a U,-number.

In the proof, we shall use some lemmas as follows.

LEMMA L Let a,, a,,...,a, (k = 1) be algebraic numbers belonging to an algebraic
number field K of degree g, 1 be algebraic and F(y, x,, x5,...,x,) be a polynomial
with integral coefficients so that its degree is at least one in y. Next assume ‘that
P(n, a), ay,:..,a;) = 0. Then degree of n < d - g and

h,, < 32dg+(h+ip+-- .+lk)gth2Igh222g e h{fkg’
where h, is the height of n, h, (i = 1,2,...,k) is the height of a; (i = 1,2,...,k), H is
the maximum of absolute value of coefficients of F, I, (i = 1,2,...,k) is the degree of F
inx;(i=1,2,...,k), and d is the degree of F in y (see O. S. Icen [5]).

LEMMA II. Let a, and a, be two algebraic numbers such that they have different
minimal polynomials. Let n, and n, be degrees of a,, a, and H(a,) H(az) be the
height of a,, a, respectively. Then we have

5) o —ay= (2"“"(""")_‘[("'1 + 1')H(°‘|)]"2[("2 + I)H(az)]n')_‘l
(see R. Giiting [4]).

.- In the following we will use certain elementary facts about continued fractions
which the reader may find in Cassels [3].

LemMA II1. Let P/Q (P/Q > 1) be a rational integer with finite continued fraction
P
(6) —Q-=(a0,a,,a,2,.. Byiysensbm)

and Aj/Bj (j=0,1,2,...,n) be jth convergent of (6). Put R,,/S,, =(byy1se--sby)-
Then we have :

(7 P=AR,+A, .S, Q=BR,+B,,S,.

PrOOF. We have from the theory of continued fractions that

P < R,,> AR, +A,_,S,
ag, a,, _—_——

-Q—= ’a"’?n B Ban+Bn—1Sn '

Put A,R,+A4,_,S,=C, B,R,+ B,_,S,= D. Assume that (C, D) = ¢t. Then we
have '
t|CB,—A,D=S§,, t|CB_ A,_\D= R
s0 we get
' t|(S,,R,)=1 or t=1.
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LEMMA IV. Let P,/Q,, P,/Q, be two rational numbers. with continued fraction
expansion _ 4
P Py
- = <ao,a|,-..,an>, - = <bo, bl""’bn> (a0>0, b0>_0)
o, 0, '
such that '

(8) o ' b<Sa: (j=0,1,2,..,n)
O P
where S,, S, are positive integers. Then we have’
(9) max(P,, Q,) < aoszzm'ﬂos; Somax(P;, Q, )21+,

ProOF. We know from the theory of continued fractions that

n
(10) Q=2 'be,-, Py <2byQ,.
By using (8) in (10) we get
n i o n S,

(11) max(P,, Q,) <2"*'p, [I bjgz"“s,"fzqu( I"[‘aj) f

- j=0 ' EERER W2 | IS0SY A
On the other hand we have ‘
(12) 0, >max( Il q 2‘"'2’/2) .

o

Thus, by combining the relations (11) and (12) we obtain
max(P,, Q,) < a522‘”+'°gz S')max(P Q )S’*;Z('J"‘)“2 o,

PROOF OF THE THEOREM We define algebraic numbers a, (n= 0,1,2,...) by :

(13) @, = ("0o"h esChrees)s
where ’ | . .
_[b., r<r, '_(‘) -
Cr-—> a;, r>rn i (n_ s 1y g...)., .
Put oL e,
(]4) B"': <ar"+l’ar"+2’”.°> (n=091a2,.-.)9
(15) zk (b, byren by

We see from the definitions of algebraic number a and B,(n = 0, 1,...) that

a= <a01, a,,l...,a,,, B,-">

or I U, .
(16) aqr,,ﬁr,, + qr,,—la - Br,,pr,, i'pr"—l =0 (n = 0’ 1" . ‘)'
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Now we can apply Lemma I with
F(y,x)= 9. y%t g, X, =P, Y~ Pr—1> n=48,0 =a
and we get
H(B,) <3"H(a)"max(p,.q,)" (n=0,1,...),

or using the relation p, < 2a,q, and puttingc, = 3*m(2a,)"H(a)™, we obtain

(17) H(B,)<cgr (n=0,1,..).
Similarly combining the relations (13), (14), (15) we get
(18) 480, +a4 o, —p B —p =0,
and applying Lemma I withn = a,,a; =B, (n =0,1,.. .) and using (17)
(19) H(a,) < 3"[max(p.,q.)]"(c,g™)" (n=0,1,...).

On the other hand, by (4), we have
b<Kaf: (j=0,1,..).
Therefore we can apply Lemma IV with S, = K, S, = K,, P,/Q, =p, /4,, P,/ Q,
= p,./4,, and we obtain .
max( p;,, g;,) < a§224!+18:KD max( p, , g, )32 TR0,
Thus using this expression and p, < 2a,g,, in (19) and putting
= 24m(|+log;K.)+m(2+K2+21052K|)33magml(2+2m(1+logzl(,)c:n’

¢; =1+ m@ + K, + 2log,K,) + m?

we get

H(a, )< czq,‘:"" (n=0,1,...).
Since g, — o0 asn — oo, there exists a posiiive integer n, such that if n > n, then
(20) ' H(e,)<g? (c;>0).

Now, to prove that { € U7, U, we shall approximate § by the algebraic numbers
a, (n=0,1,...).
By the definitions of £ and a, , we see that

(21) |£ -a,

<

1
(¢,)
Now we put

(PnSh)

= <ar,,+l’ ar,,+2""’as,,>‘
Su)

By Lemma III we can see easily that
(22) 45, > Sr, .s,)



ON U, -NUMBERS 503

and
(23) 4, = &R 50 T 4, -180,.5) < 24, max( R, s S(r...s..))
or using the relations R, , < 2a,n+ 15,5, and (22) in (23) we get
(24) 4, <4a,,4,4..
Now we shall give an upper bound for a, .- By applying Lemma II with a; = a,
«; =p,,/4,,(n>n,) and putting
¢y =2""la(m + 1)H(a)

we obtain
_Pﬁ 1

25
( ) qr,, C4q::

(that is, we obtain Liouville’s Theorem).
On the other hand it follows from the theory of contmued fractions that

=

a—

(”»>"|)

(26) a-rla 1
q’n ‘ar,,+ qu n
Finally combining the relations (24), (25), (26) we get
27 q,, <4cyq'q;,  (n>ny).

Hence the relation (27) and condition (3a) show that there exists a posmve integer n,
such that

,\2
(28) 4., <(4:,)
holds if n = max(n|, n,).
Finally using (20), (28) and condition (3a) in (21) we obtain

logg, \~'

3 - log g,

(n = max(n,, n,)).

(29 [¢—a,|< (H(a,)) s

wr e

Since lim,, . .(log g,,/log g, ) = o0, (29) shows that{ € U
We shall complete the proof by showing that §{ & U I’U Let B be an algebraic
number of degree f (0 <f<m —1). Since m* f we can apply Lemma II with
a, = B, @, = a, (n = max(n,, n,)) and we get A
' = m l m—1
csH(B)" H(a,)

where ¢; = 2" 'm™(m + 1)""! is a positive constant. Next using (20) in (30) and
putting ¢, = ¢;(m — 1)

(30) 1B - a,

(” = max(n,, "2))’

(31) |B—a,|= l (”émﬂ(”l’”z))-

" csH(B)"(q,)"
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On the other hand it follows from the condition (3b) that there exists a positive
real number T; such that

(32) | qo=q,,, (n>maX(n1,nz))
Thus, using the relations (21), (28), (3 1), (32) m the inequality
l€ - 8l >[B - o, - [¢ —a,|
we obtain that | D o _
1 1
(33) [£-8= YR - (n = max(ny, n,)).
csH(B)"(4,)*  (q,,)""
Suppose that ,
(34) H(B) > max(q,_,. , .2¢s).

It is clear that, for every H(B) w:th (34), thére exxsts a pos1t1ve mteger J
(j = max(n,, n,)) such that

(35) ,<H(B)<gq,

J+I

Now we consider two cases in (35) as follows.

(@) g, < H(B) < gl/Taectm+m),
36 Tj+1
( ) (b) quli(lTo(c6+m+l)) < H(B) < qr

Case l lf H(B) sausfles condmon (36a), takmg n= ] in (33) and using. (34), (36a)

we obtain
1 1 1
(37) ¢ - Bl= T prwr
csH(B) e H(B) et 2"5”(5)m+p6+l

Case 2. Suppose that (36b) holds Then takmg n= 1 +lin (32) and using the first

part of (36b) we obtain that ‘
t . 1 : '— 1
|§ ,3|> csH(ﬁ)m+c°T°(c°+m+l) (q'm)l/ro

or

6 B

SH(B)"'"‘%To(%"""‘H) H(B)(IOS qrj+2/l°g ¢hj+.) (l/To)

It is easy to see that condition (3a) in the Theo;em 1mp11es that
v log log,.; v
joo . log q,j .

So using this relation in (38), we get -

(39) - B> .

2CSH(ﬁ)m+C6T°(C6+m+|)— |

for sufficiently large j.
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Thus the relations (37), (39) give as ¢ ¢ U ;."z_,' U, and this completes the proof of
the Theorem.

Note that it can be seen easily from the proof that if we replaced the condition
(3a) by

— logg, log g,
lim #=oo, lim T——gL>m+067})(c6+m+1)+l,
n—co 1984r, e 084,

the theorem is still true. (Of course, m + ¢;Ty(cs + m + 1) + 1 is effectively compu-

table.)
As a special case of the Theorem we take r,,, = s, + 2 and we define integers b;

(j=0,1,...)by
aj’ j;érn‘l-l—l (n=0’1’~~'),

b.
7T a 41, =, =1 (r=0,1,.0).

By the Theorem, we have
¢=(by, by,...,b,,...YE U,.
Hence it follows from the Thue-Siegel-Roth Theorem and the above example that

COROLLARY. For every positive integer m (m > 1) there exists a subset K,, of U,
which has the continuum cardinality such that if ¢ € K, and € > 0, then

_P 1
ﬁq

<2+
[
q

has only finitely many solutions in integer p, q.
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