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MINIMIZING SETUPS FOR CYCLE-FREE ORDERED SETS

D. DUFFUS, I. RIVAL AND P. WINKLER

Abstract. A machine performs a set of jobs one at a time subject to a set of

precedence constraints. We consider the problem of scheduling the jobs to minimize

the number of "setups".

Suppose a single machine is to perform a set of jobs, one at a time; a set of

precedence constraints prohibits the start of certain jobs until some other jobs are

already completed. Any job which is performed immediately after a job which is not

constrained to precede it, however, requires a "setup"—entailing some fixed addi-

tional cost. The problem is schedule the jobs to minimize the number of setups.

It is common to render "a set of precedence constraints on a set of jobs" as "an

antisymmetric and transitive binary relation on a set," that is, "a (partial) ordering

on a set." In this analogy a "schedule satisfying the precedence constraints" becomes

"a linear extension of the ordered set" (of all jobs). The problem of minimizing the

number of setups can be entirely recast as a problem concerning linear extensions of

an ordered set. The problem itself is attributed in [2] to Kuntzmann (cf. [6]).

Progress on the problem can be found in several papers including [3, 4, and 7] and

recently W. R. Pulleyblank [7] has shown that this problem belongs to that class of

problems whose complexity is described as NP-hard.

For elements a, b of an ordered set (P, <)—simply written as P—we say that b

covers a if a < b in P and a < c < b implies a = c. Let L be a linear extension of P;

that is, a total ordering of the underlying set of P such that a < b in L whenever

a < b in P. A 'setup for V is an ordered pair (a, b) of elements of P for which b

covers a in L but a «^ b (and hence also a ^ b) in P. Let sL(P) count the number of

such ordered pairs and let

s(P) = min{sL(P) \ L is a linear extension of P}.

The problem is construct a linear extension L of the ordered set P for which

sL(P) = s(P).

u1 ""2 'S S» '"5

s(P)=l sLj(P) = 2   sL2(P) = 2     SL3(P)=1      sL4(P) = 3     sLs(P) = 2

_ Figure 1
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Any linear extension L of P can be obtained by partitioning P into chains

(linearly ordered subsets) CvC2,...,Cm such that x < v in L if either x <y in P, or

x G C, and v G Ç, where /' <y. In particular, L is the linear sum of chains

L= C, ©C2© ••• ®Cm.

If the greatest element max(C,) of C, is not below the least element min(C,+ 1) of

C,+1 in P, then (max(C,), min(C,+1)) is a setup for L. Evidently, sL(P) < w — 1 and

if max(C,) 4 niin(C,+1) for each i = 1,2,... ,m — 1, then sL(P) = w — 1. Accord-

ing to Dilworth's theorem [5], the smallest number of chains into which P can be

partitioned is equal to the width w(P) of P—the size of a maximum-sized antichain.

Therefore, s(P) > w(P) - 1.

Of course, equality does not in general obtain. Indeed, a partition C,, C2,...,Cw(/,)

of P into chains can be arranged to form a linear extension of P only if there is a

permutation p of (l,2,...,w(P)} such that p(i) < p(j) implies x ^ y for any

x G Cp(/) and v G Cp(j). No such permutation could exist if there were a subset (say,

{C,,C2,...,C„}) of the partition, and elements x¡,y¡ G C¡, i = 1,2,...,«, satisfying

v, <x,,x, >j2,>'2<x2,x2> v3,...,*„_, >>'„,>'„ <xn)xn>v,.

An ordered set {x,, v,, x2, v2,... ,x„, >>„} of size In, n^l, with these comparabili-

ties, and no others, is called an alternating 2n-cycle, or more briefly a 2n-cycle (see

Figure 2).

Figure 2

The ordered sets shown in Figure 3 are cycle-free, that is, contain no subset

isomorphic to an alternating 2 «-cycle.

6

Figure 3
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The principal result of this paper is

Theorem. Let P be an ordered set without alternating cycles. Thens(P) = w(P) — 1.

The case where P has length two (that is, P has no three-element chain) is

particularly easy to verify. We proceed by induction on the size of P: if P contains

an isolated element a then w(P — {a}) = w(P) — 1 and clearly s(P) = s(P — {a})

+ 1. Otherwise, as P is cycle-free there is an element b comparable with precisely

one other element, say, b < c. Again if w(P — {b}) = w(P) — 1 then the induction

hypothesis applies; otherwise, w(P — {b}) — w(P) and, indeed, w(P — {b, c}) =

w(P) - 1. Finally, s(P) = s(P - [b, c}) + 1, so in any case, s(P) = w(P) - 1.

Before we turn to the proof of the theorem, note from the ordered sets illustrated

in Figure 4 that the converse of the theorem cannot hold.

m ¡fl
P1 P2

S(PÍ) = 2 = W(PÍ)-1     (i=1'2)

Figure 4

Proof of the theorem. We proceed by induction on m = w(P). Let Cl,C2,...,Cm

be a sequence of maximal chains of P such that

m

p= U c,.
;=l

(Such a sequence can always be obtained by extending each of the m chains in a

partition of P by width-many chains.)

Let x, v, z G C, with x < y < z and suppose that for somey, {x, y, z) f~l Cy = {v).

Then some element x' in C must be noncomparable to x, else the addition of x

would extend Cy, similarly there must be an element z' of Cj noncomparable to z.

But then {x, z, x', z') is a 4-cycle, contradicting the hypothesis of the theorem. It

follows that, for any /' and y and any v G C, n C}, either {x G C,. U C}\ x < v} is a

chain or (z G Cj- U Ç | z > v} is a chain.

For each i, let

p, = q - U cj,

Then Pi¥=0 for each i — 1,2,...,m, for otherwise m = w(P) < m. We now

introduce a binary relation " -* " on [C¡\ i = 1,2,... ,m} as follows: C, -» Cj if there

are elements x G P, and v G Cj — C, such that x > v in P. The definition is

motivated by this observation:

if for some i, C, +> G for ally then s(P) = w(P) - 1.
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To prove this let x = max(P,), C = {v G Cj, | v =e x}, and let P' = P - C. Then

w(P') = w(P) — 1 and by the induction hypothesis there is a linear extension U of

P' consisting of a linear sum of m — 1 chains of P'. We claim L = C © L' is a linear

extension of P; if not, there are elements y E. C and z G P' D Cj, for some y 7e í,

with v > z. Hence z < x and since Cj v* Cj, it must be that z G Cj; then z G C, an

impossibility.

We may therefore suppose that for each i there is some y such that C, -» Cj. After

suitable relabelhng, there is a sequence 1,2,...,/? of smallest length such that

C -> C -> • • • -> c c,.
Choose x, G P, and y¡ G C, — C,_, with x, > v,+,, for each / = 1,2,...,« (mod «).

Observe that x¡ > v, for each i, 1 *s /' «8 «. We conclude the proof by verifying that

{x,, V], x2, y2,...,xn, yn) must now contain an alternating cycle. Let us suppose

that it is not itself a 2 «-cycle.

Case (i). Let x, > Xj. Since x, $ Cj there is some x > x, in Cj which is noncom-

parable with x,. Further, since yj+, G Cj there is some v < x, in Cj which is

noncomparable wiflifc^; then (x,, x, ^+„ v) is a 4-cycle.

Core (ii). Let v, = .y,, /' 9*Jf, Then C,_, -* C^, contradicting the minimality of «.

Case (iii). Let v, < K-. If yi G Cj then there is v < jy in Cj noncomparable with^,, so

{xy_,,xy, j,, v} is a 4-cycle. If y¡ G Cy then C,_, -» Cj, again contradicting the

minimality of «.

It follows that v, is noncomparable with v, for each i ¥=j.

Case (iv). Let x, >yj, wherey ^ /' andy ¥fJJ+ 1. Since j7 is noncomparable with v,-,

j^ f2 C, so C, -» Cj which is again impossible.

Case (v). Let x, < y}. Then v, < ^ which was already ruled out.

This completes the proof.

An algorithm. Implicit in the proof of the theorem is an algorithm to construct a

linear extension L of a cycle-free ordered set P which is optimal in the sense that

sL(P) = s(P) — w(P) — 1. The following procedure, though inductive, is based on

a single covering C,, C2,..., Cw(P) of P by maximal chains.

d      CjHa.d.g}

a

C^ = {b,e|

c., = h

f      QjHc.f.hf

Figure 5
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According to the proof of the theorem, in any such covering there is a chain (say,

C, ) such that for any i: = 2,3,..., w(P), C, +* Cj. Let c, = max(P, ), C[ - {x G C, |

x < c,}, and Q — P — C[. Then Cj is covered by the chains Q D C2,...,Q D 0,^,

and by inductive use of this algorithm Q has a linear extension

- c2 <±> c3 w • • • wc„(f)

with sLiQ) = w(Q) - 1, where Cj' C C, for each / = 2,3,... ,w(P). Then L- C,' ©

L' is a linear extension of P for which sL(P) = w(Q) = w(P) — 1 as required.

The algorithm is illustrated in Figure 5 for a particular cycle-free ordered set of

width three.
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