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A CRITERION FOR FINITE MODULE TYPE

CHRISTINE BESSENRODT

Abstract. The following result is proved: If a /»-block of a finite group has only

finitely many indecomposable liftable modules with the defect group of the block as

a vertex or if it has only finitely many indecomposable periodic modules, then the

block is of finite module type.

1. Introduction. The purpose of this paper is to give a criterion for a block to be of

finite module type (that is, the block has only finitely many nonisomorphic indecom-

posable FG-modules) by looking at some nice families of modules in the block,

namely the liftable and the periodic modules.

Let G be a finite group and (F, R, K) ap-modular splitting system for G, that is,

R is a complete discrete valuation ring with quotient field K of characteristic 0 and

residue class field F of characteristic p, such that K and F are splitting fields for all

subgroups of G. For further notation we refer to [3]. Then we have the following

criterion:

Theorem. Let B be a block of FG with defect group D. Then the following are

equivalent:

(i) B is of finite module type.

(ii) B has only finitely many indecomposable liftable modules with vertex D.

(iii) B has only finitely many indecomposable periodic modules.

Of course, "finitely many" always means up to isomorphism.

2. Preliminary results on periodicity. In the following A E {R, F) and for A = R

an y4G-module means an ÄG-lattice, that is an FG-module which is finitely gener-

ated and torsionfree as an Ä-module. Moreover, in this chapter F and iv need not be

splitting fields.

First let us recall the definition of Heller's operator fi. If U is an v4G-module then

by [4,6] there exists a minimal projective presentation 0 -* fit/ -» P -» U -» 0, that

is, P is a projective ylG-module and fit/ has no projective summands. P and fit/ are

uniquely determined by U (up to isomorphism), and if U is indecomposable and

nonprojective, then so is fit/. By iterating this process we get Ü'U, for all i E N.

Then an /IG-module U is called periodic if U^Ü'U@L for some z > 0 and

projective A G-module L.

A block B of A G is called periodic if all modules in B are periodic.
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2.1 Remark. Since a direct sum of modules is periodic iff all summands are

periodic, a block B is periodic iff the indecomposable modules in B are periodic.

The following fact is well known and can easily be proved.

2.2 Lemma. An AG-module is periodic iff its source is periodic.

2.3 Proposition. A block B of AG is periodic iff its defect group D is cyclic or

generalized quaternion.

Proof. If A = F then by [2] there is an indecomposable FG-module U in B with

source FD. If A — R, then using this for the corresponding block of FG and [8] we

thus also have an indecomposable ÄG-lattice U in B with source RD. Now if B is

periodic then so is U and hence AD by 2.2. But this is well known to be equivalent to

D being cyclic or generalized quaternion. If D is cyclic or quaternion then all

,4Z)-modules are periodic. Hence all modules in B are direct summands of induced

periodic modules, and so B is periodic.

3. Proof of the theorem.

3.1 Proposition. Let F be any field of characteristic p and B be a block of FG with

defect group D, which has only finitely many indecomposable liftable FG-modules with

vertex D. Then B is periodic.

Proof. As in the preceding proof there is an indecomposable module M in B with

source FD which is liftable, say M =s U, where U is an indecomposable ÄG-lattice.

Now fi'(M) * fi'(t/) for all i E N0 by [4], so the fi'(M) are indecomposable liftable

modules with vertex D in B. By assumption there are only finitely many such

modules in B, hence M must be periodic and by 2.2 so is FD. Now this implies B is

periodic by 2.3.

3.2 Proposition. Let B be a block with generalized quaternion defect group Q. Then

B has infinitely many indecomposable liftable modules with vertex Q.

Proof. Let t be the unique involution in Q. First suppose (t)<G. Then

G = Cc((í». By [3, 64.5] we have a uniquely determined block B of G = G/(t)

corresponding to B (by BEB) with defect group Q/(t). Since 0/(0 is neither

cyclic nor quaternion, 2.3 together with 3.1 shows that B has infinitely many

indecomposable liftable modules with vertex Q/(t). By regarding these FG-modules

as FG-modules we obtain an infinite number of indecomposable liftable modules

with vertex Q in B.

In the general case we use Green correspondence between Nc((t)) and G. As (t)

is a trivial intersection set, the Green correspondent of a liftable module is again

liftable (this is easy, see e.g. [7, 2.8]). So by using the first case and Green

correspondence we get an infinite set of nonisomorphic indecomposable liftable

modules with vertex Q in B.

3.3 Proof of the theorem.

(i) => (ii), (iii) is trivial.

(ii) => (i) As a direct consequence of the preceding propositions D is cyclic; hence

B is of finite module type by [5].
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(iii) => (i) By [5] a block is of finite module type iff its defect group is cyclic. So

suppose D is not cyclic. Then by [1] there are infinitely many indecomposable

periodic FD-modules. Hence there are infinitely many indecomposable periodic

Fy-modules which are sources, for some Y « D, since a source is a source for only

finitely many FD-modules. By [2] each of these sources is a source for an indecom-

posable module in B, which is periodic by 2.2. Since every module has only finitely

many sources we thus have infinitely many indecomposable periodic modules in B.
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