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AN ANISOTROPIC LOCALLY HYPERBOLIC QUADRATIC SPACE

INTA BERTUCCIONI

Abstract. We construct a semilocal normal domain A and a quadratic space over A,

which is locally hyperbolic but anisotropic. This answers a question of H. Bass.

Let A be a commutative ring in which 2 is invertible. A quadratic space over A is a

projective /1-module M of finite rank, equipped with a regular symmetric bilinear

form ( , >. M is said to be hyperbolic if it is isometric to a quadratic space H(P)

of the form P © Hom^P, A), where P is a projective ,4-module and (p © f,q®

g) = /(a) + 8(p)- We say that M is locally hyperbolic if Mm is isometric to H(A"m)

for every maximal ideal m of A ; and that it is isotropic if it contains a unimodular

element u of length zero: (u, u)=Q. In [1] Bass asked if a locally hyperbolic

quadratic space over a semilocal domain A is always isotropic. He also gave an

example showing that this is false if A has zerodivisors. We show the existence of a

rank 4 quadratic space over a semilocal normal domain that is locally hyperbolic and

anisotropic.

Let k be a field of characteristic ¥= 2 and A, Y, Z, s, t, U, V, W indeterminates. Let

B be the affine Ar-algebra k[x, v, z] = k[ A, Y, Z]/(Z2 - (Y - A)(y - A2)). B is

nonsingular in codimension 1, hence normal by Macaulay's theorem. It is easy to

check that there is an isomorphism <j>: B[l/z] A k[s, t, 1//], where

f=s(t-s)(\-t(t-s)),

given by <$>(z) = (t(t - s) - l)(z - s)'ls~2, <j>(x) = s<p(z) and </>( v) = td>(z). This

shows that fi[l/z] is factorial and by Nagata's theorem [3, Theorem 6.3] the divisor

class group Cl(B) of B is generated by the classes of the prime ideals of height one

that contain z, that is, by p — Bz + B(y - x) and q = Bz + B(y — x2). From

t>q = Bz ■ (Bz + B(y - x) + B(y - x2)) and p2 = B(y - x) ■ (B(y - x) +

B(y — x2)), we conclude that Cl(B) is of order at most 2 and is generated by the

class of p. Localizing B at S = fi\m¡ U m2, where m\ = Bz + Bx + By and

m2 = Bz + B(x — 1) + fi( v — 1), we get a semilocal normal ring A with 2 maximal

ideals m, = S~lm\ and m2 = S~'m'2. Let C be the localization of

k[U,V,W]/(W2- UV) = k[u,v,w]

at the maximal ideal generated by w, v, w. Mapping x, y and z to u, u + v(\ — u)

and w respectively, we get an isomorphism of Am onto C. An isomorphism of Am

onto C can be defined in a similar way. Hence Cl(.4m ) is the same as C1(C), which
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is known to be the group of order 2 (see [3, p. 34 and Proposition 7.4]). Since Cl(A)

maps surjectively onto C\(Am), we conclude that Cl(yl) is of order 2 and that

Cl(Am) is generated by the class of pAm. We now go back to A and consider the two

.¿-modules Q = A © A and P = p © p. The ring Ax(X_x) is a Dedekind domain and

Pl(i-x)is Principal, hence Px(X_x) = Ax0_x) © P2x0-x) = Qx(l-x). Patching Px with

Qi-X over Ax(X_x) by an isomorphism as above we get an A -module M. Clearly

End ^ M is locally isomorphic to a 2X2 matrix algebra and is, therefore, a

quaternion algebra in the sense of [2]. The reduced norm defines on N = End^M a

structure of quadratic space over A. N is locally hyperbolic because Nm s M2(Am)

with the quadratic form given by the determinant. We now show that N is

anisotropic. Assume that it contains an isotropic unimodular element. Then it

contains a hyperbolic plane H(A) and it splits as N = H(A) ± N'. The rank of M is

2 and its discriminant is trivial, hence N' = H(A) and N is nothing but M2(A) with

the quadratic form given by the determinant. By [2, Proposition 4.4] this implies that

End^M and M2(A) axe isomorphic as ^4-algebras. By Morita duality this means that

M is of the form / © / for some divisorial ideal I oí A. Since Mx_x = Qx _x, the ideal

7i_x is free. We have seen that Cl(A) -> Cl(Ax_x) is an isomorphism, hence / itself

must be free. This is impossible because Mx is not free.
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