AN ANISOTROPIC LOCALLY HYPERBOLIC QUADRATIC SPACE

INTA BERTUCCIONI

ABSTRACT. We construct a semilocal normal domain A and a quadratic space over A, which is locally hyperbolic but anisotropic. This answers a question of H. Bass.

Let A be a commutative ring in which 2 is invertible. A quadratic space over A is a projective A-module M of finite rank, equipped with a regular symmetric bilinear form $\langle \ , \ \rangle$. M is said to be hyperbolic if it is isometric to a quadratic space H(P) of the form $P \oplus \operatorname{Hom}_A(P,A)$, where P is a projective A-module and $\langle p \oplus f, q \oplus g \rangle = f(q) + g(p)$. We say that M is locally hyperbolic if M_m is isometric to $H(A_m^n)$ for every maximal ideal m of A; and that it is isotropic if it contains a unimodular element u of length zero: $\langle u, u \rangle = 0$. In [1] Bass asked if a locally hyperbolic quadratic space over a semilocal domain A is always isotropic. He also gave an example showing that this is false if A has zerodivisors. We show the existence of a rank 4 quadratic space over a semilocal normal domain that is locally hyperbolic and anisotropic.

Let k be a field of characteristic $\neq 2$ and X, Y, Z, s, t, U, V, W indeterminates. Let B be the affine k-algebra $k[x, y, z] = k[X, Y, Z]/(Z^2 - (Y - X)(Y - X^2))$. B is nonsingular in codimension 1, hence normal by Macaulay's theorem. It is easy to check that there is an isomorphism ϕ : $B[1/z] \stackrel{\sim}{\to} k[s, t, 1/f]$, where

$$f = s(t-s)(1-t(t-s)),$$

given by $\phi(z) = (t(t-s)-1)(t-s)^{-1}s^{-2}$, $\phi(x) = s\phi(z)$ and $\phi(y) = t\phi(z)$. This shows that B[1/z] is factorial and by Nagata's theorem [3, Theorem 6.3] the divisor class group Cl(B) of B is generated by the classes of the prime ideals of height one that contain z, that is, by $\mathfrak{p} = Bz + B(y-x)$ and $\mathfrak{q} = Bz + B(y-x^2)$. From $\mathfrak{p}\mathfrak{q} = Bz \cdot (Bz + B(y-x) + B(y-x^2))$ and $\mathfrak{p}^2 = B(y-x) \cdot (B(y-x) + B(y-x^2))$, we conclude that Cl(B) is of order at most 2 and is generated by the class of \mathfrak{p} . Localizing B at $S = B \setminus \mathfrak{m}'_1 \cup \mathfrak{m}'_2$, where $\mathfrak{m}'_1 = Bz + Bx + By$ and $\mathfrak{m}'_2 = Bz + B(x-1) + B(y-1)$, we get a semilocal normal ring A with 2 maximal ideals $\mathfrak{m}_1 = S^{-1}\mathfrak{m}'_1$ and $\mathfrak{m}_2 = S^{-1}\mathfrak{m}'_2$. Let C be the localization of

$$k[U, V, W]/(W^2 - UV) = k[u, v, w]$$

at the maximal ideal generated by u, v, w. Mapping x, y and z to u, u + v(1 - u) and w respectively, we get an isomorphism of A_{m_1} onto C. An isomorphism of A_{m_2} onto C can be defined in a similar way. Hence $Cl(A_{m_1})$ is the same as Cl(C), which

Received by the editors March 14, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 15A63; Secondary 16A16.

is known to be the group of order 2 (see [3, p. 34 and Proposition 7.4]). Since Cl(A)maps surjectively onto $Cl(A_m)$, we conclude that Cl(A) is of order 2 and that $Cl(A_m)$ is generated by the class of pA_m . We now go back to A and consider the two A-modules $Q = A \oplus A$ and $P = \mathfrak{p} \oplus \mathfrak{p}$. The ring $A_{x(1-x)}$ is a Dedekind domain and $\mathfrak{p}^2_{x(1-x)}$ is principal, hence $P_{x(1-x)} \cong A_{x(1-x)} \oplus \mathfrak{p}^2_{x(1-x)} \cong Q_{x(1-x)}$. Patching P_x with Q_{1-x} over $A_{x(1-x)}$ by an isomorphism as above we get an A-module M. Clearly End₄M is locally isomorphic to a 2×2 matrix algebra and is, therefore, a quaternion algebra in the sense of [2]. The reduced norm defines on $N = \text{End}_A M$ a structure of quadratic space over A. N is locally hyperbolic because $N_m \cong M_2(A_m)$ with the quadratic form given by the determinant. We now show that N is anisotropic. Assume that it contains an isotropic unimodular element. Then it contains a hyperbolic plane H(A) and it splits as $N = H(A) \perp N'$. The rank of M is 2 and its discriminant is trivial, hence N' = H(A) and N is nothing but $M_2(A)$ with the quadratic form given by the determinant. By [2, Proposition 4.4] this implies that End M and $M_2(A)$ are isomorphic as A-algebras. By Morita duality this means that M is of the form $I \oplus I$ for some divisorial ideal I of A. Since $M_{1-x} = Q_{1-x}$, the ideal I_{1-x} is free. We have seen that $Cl(A) \to Cl(A_{1-x})$ is an isomorphism, hence I itself must be free. This is impossible because M_r is not free.

REFERENCES

- 1. H. Bass, *Quadratic modules over polynomial rings*, Contributions to Algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977.
- 2. M.-A. Knus, M. Ojanguren and R. Sridharan, Quadratic forms and Azumaya alegbras, J. Reine Angew. Math. 303/304 (1978), 231-248.
- 3. P. Samuel, Lectures on unique factorization domains, Tata Inst. of Fundamental Research Notes No. 30, Bombay, 1964.

ROUTE DE LA PLAINE 5, 1022 CHAVANNES, SWITZERLAND