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CONULL HYPERSURFACES IN MINKOWSKI SPACE

NORMAN GOLDSTEIN1

Abstract. A submanifold of M = Gr(2, C4) is conull when its conormal space is in

the kernel of the dualized conformai metric of M. We show that there are no conull

compact complex 3-dimensional submanifolds of M.

Let M be complex Minkowski space, complex analytically homeomorphic to

Gr(2, C4), the Grassmannian of 2-planes in C4.

Each linear P2 in M is a null manifold i.e. the tangent space TX(P2) consists

entirely of null vectors, for each x E P2 cf. [4, 5.1 ].2 Of course, any curve lying in

such a P2 is null, but there are other null curves.

Example 1.
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is a null smooth P1 contained in M, but is not contained in any hyperplane section

via the Plucker embedding M •» P5. (See Griffiths and Harris [2, 2.4] for a local

description of null curves in Grassmannians.)

Let A be a complex submanifold of M. We say that A is conull if the conormal

space of X,N*XC T*M, consists entirely of null covectors. It is an exercise in linear

algebra to verify that for dim(A) = 2, Ais null precisely when Ais conull. However,

the plethora of null curves is in marked contrast to the lack of conull hypersurfaces.

Theorem. Let X be a smooth compact complex hypersurface of M. Then X is not

conull.

Proof. Let G = PGL(3, C) be the projective linear group. The group G acts

transitively on M, and defines an action on the cotangent bundle, T*M. This latter

action has 3 orbits—the zero section, the null covectors, and the open orbit. It is

well known that the normal bundle, TVA, of A in M is ample (e.g. [3, 2.9]). By [1,

4.5.2], TV* A must meet the open orbit.    ■

The theorem is not a local result.
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2 The proof of the converse statement, as pointed out to me by Robert Bryant, is a straightforward local

calculation: A null surface in M is necessarily a linear P2.

531

«1982 American Mathematical Society

O002-9939/82/0OO0-O258/SO1.25



532 NORMAN GOLDSTEIN

Example 2. Let Y be the smooth points of a singular hyperplane section of M.

Then Y is conull.

Remark. The theorem is true with M being any Grassmannian or quadric, and

should remain valid with M replaced by G/P, G a simple complex Lie group and P

a maximal parabolic subgroup. A smooth hypersurface of G/P does have an ample

normal bundle, but I do not know, in general, whether G/P is rigged, in the sense of

[1, §3].
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