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ON THE OSCILLATION AND NONOSCILLATION OF

SECOND ORDER SUBLINEAR EQUATIONS

MAN KAM KWONG1 AND JAMES S. W. WONG

Abstract. An oscillation criterion and a nonoscillation criterion are given for the

sublinear equation v" + a(t) | y \ysga y = 0, 0<y< 1, ie[0,oo), where a(t) is

allowed to change sign. When applied to the special case a(t) = f sin t, we deduce

oscillation for X > -y and nonoscillation for A < -y.

We are interested in determining when all continuable solutions of the sublinear

Emden-Fowler equation

(1) y"(t) + a(t)\y(t)rs&ty(t) = 0,       t e[0, oo), 0 < y < 1,

are oscillatory. We are especially motivated by the particular case a(t) — rxsin t or

more generally txf(t) where/is a periodic function of period T such that j0T f(t) dt

>0.

We shall use as weight functions those <p: [ 0, oo) -* [ 0, oo) such that

(2) <*>' > 0,       <t>" < 0.

In an earlier paper [2], the authors proved the following extension of the

well-known Belohorec Theorem.

Theorem. If there exists a function <p satisfying (2) such that

lim sup — /   / <py(r)a(r) dj dt = oo,
7-^ao       1  J0  J0

then (1) is oscillatory, i.e. all continuable solutions of (I) are oscillatory.

An immediate consequence of this theorem is that when a(t) — txf(t) with

fQTf(t) dt>0 and X ̂  -y or with f0Tf(t) dt = 0 and A > 1 - y, then (1) is oscilla-

tory. When ¡o f(t) dt = 0 and X < 1 — y, the theorem fails to apply.

The first result of this paper is a sufficient oscillation condition that applies to

cases in which

lim   — /   / </>y(i-)a(T) drdt
T^tx   I Jq jo

exists and is finite. This condition allows us to deduce oscillation for X > -y in our

motivating example. To supplement our first result, we prove a nonoscillation
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theorem which allows us to settle the cases X < -y. The critical case X = -y remains,

however, unanswered. Thus the conjecture made by Butler in [1, p. 144] is almost

completely proved. For reference to other known results consult [2] or [3].

1   fT n

We define the functions

(3) &(s)= lim  ^¡T('<F(T)a(7)d7dt
T— oo    I  Js   Js

and

&+(s) = m!ix{&(s),0}.

Theorem 1. If there is a weight function </> satisfying (2) so that the function & given

by (3) is defined and satisfies

(4) hmsup   / <&     /       ., ;  ds       = oo,
r-oc   Vo       s l\Jo   <p2(s)      J

then (1) is oscillatory.

Proof. As in [2], the following easily verified identity plays a crucial role:

(5) i>'-')» + (ß - D^-V2 + (^j*'- = - (^I)^a,

where z = (y/<j>)y and ß = 1/y > 1. Integrating (5) twice, first over [s, t], then over

[s, T], we obtain

</>(7V-'(T) - *(*)*'-'(*) -(<b(s)z»-*(s)y(T-s)

(6) +o:{"fy-'^'
+ (ß - \) (T¡%{j)z^(t)z'2(t) drdt

= -(^-j1)fsTfy{r)a(r)drdt.

Dividing by T and letting T — oo, we see that, because the right-hand side tends to a

limit and the integrands of the two integrals on the left-hand side as well as the first

term are nonnegative, the following limits exist and are finite:

(7) 0<lim   W-lW=K«».
r-» L

1    fT

and

(8) 0< lim   ^fT('tb(T)zß-3(r)z'2(r)drdt = G(s)<x

0 < Km  y/7'(-^)z^-'(T)dTd/ = H(s) < oo.

It follows from (8) that

(9) r<?(r)Z^3(r)z'2(T)dr<oo
Jo

since the integrand is nonnegative.
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In view of all these, (6) imphes

ft — l
K - (<P(s)z^-\s))' + H(s) + (ß- l)G(s) = -^-j1^)

and so

&(s)^j^(<t>(s)zß-\s)y,

from which

&l(s) „ /     ß    \2(<b(s)z^(s))'2

s     ~~ \ß-l) s
(10)

ß ^'2{s)z2^2  |   (ß-l)2<b2(s)z2^(s)z'2(s)

ß-l

By (7) and (9),

(11)        ^^{s)z^-\s)z'2(s)ds ^ KrMzV-i{s)tn(s) ds<^
J0 s Jo

where K0 - sup(S,0 <b(t)zß~\t)/t. By (7) again

t^2(s)z2^2 j_„  fT**(s)s
(12) fT*^-ds^K0{

Jn S Jr.
ds.

Jo s VJo   <b2(s)

Inequalities (10), (11) and (12) together contradict our hypothesis (4). This completes

the proof of the theorem.

Remark. For the case a(t) = txsin t and 1 > X > -y, we can choose <b(t) = ^

with any /x such that 0 < p < 1 and 1 > uy + X > 0. Denote py + X by 6. Then ê is

defined and ®,(s) = í*(cosí + o(l)). Since (¡>'2(s)s/<b2(s) — u2/s, (4) is satisfied and

so (1) is oscillatory. The same argument works for a(t) = txf(t) with f0Tf(t) dt = 0

and X > -y.

The following result extends the necessity part of Belohorec's Theorem, i.e.

equation (1) has a nonoscillatory solution if a(t) satisfies

(13) a(t)>0,        (°°tya(t)dt< oo.

Condition (13) imphes in particular that lim^x j0Ta(t) dt exists and is finite when

a(t) is nonnegative.

Theorem 2. Suppose that A(t) — /,°° a(t) dt exists for all t > 0. If there exists a

function F(t) e C'[0, oo) such that \ A(t)\< F(t) for all large t where F(t) = 0(t~y)

as t -» oo and

(14) f°f'\F(t)\dt = B0< co

then (1) has a nonoscillatory solution.

Proof. Let ym(t) be the solution of (1) satisfyingym(l) = 0, y'm(\) = m, where m is

a positive number. We claim that when m is large enough, y'm(t) > 0 for all t > 1 and

so y is nonoscillatory. For the sake of brevity, we omit the subscript m in the

following discussion.
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Suppose now that y'(t) = 0 for some r > 1. Let t, be the smallest of such t. Let t2

be the smallest of all those / such that y'(t) = 2m. (If no such / exists, let t2 = óo.)

Finally let r = min(T,, t2}. Then on [1, t), 0 <y'(t) < 2m. It follows that

(15) 0<y(t)<2mt,       íG[1,t].

At í = t, we have either

(16) y'(r)=0    (ifT = T,)        or       y'(r) = 2m    (ifr = T2).

Integrating (1) once we have for t G [1, t]

(17) /(/) = m- f'a(s)yy(s) ds.

We now proceed to estimate the integral in (17) above as follows:

(18)

\fa(s)yy(s) ds = (A(l) - A(t))yy(t) + f'(A(s) - A(l)(yy - (s)))'ds

<yy(t){2\A(l) | +\A(t) |} + f)A(s) \(yy(s))'ds.

(The last step uses the fact that y(t), y'(t) > 0 on [1, t).) We now integrate the last

integral in (18) above:

(19)    I f'A(s)(yy(s))'dsU f'F(s)(yy(s)yds *£ F(t)yy(t) + f'\ F'(s) \y"(s)ds.

Since j4(7) tends to zero as T -» oo by its very definition, A(t) is bounded on [ 1, t),

say by a constant K. By assumption, there exists a constant Bx such that | tyF(t) \ < Bx.

For r G [1, t), we also have from (15),

(20) fl F'(s) \yy(s) ds < (2m)y f'\ F'(s) \syds^ B0(2m)y.
Jx Jx

Using (19) and (20) in (18), we find

(21) \f'a(s)yy(s)ds < (3K + B0 + Bx)(2m)y = M(2m)y.

Substituting estimate (21) into (17), we obtain

m- (2m)yM<y'(t)^m + (2m)yM,    for all t G [1, t].

For m > (2YM)I/(1 'T), we have in particular 0 < y'(r) < 2m. This contradicts (16).

Remark. For X < -y and a(r) = rAsin t, we see that | /,°° a(s) ds \ is less than a

constant multiple of tx. Then F(t) = ctx satisfies the hypotheses of the theorem and

so (1) is nonoscillatory.

Another example is offered by a(t) — i'^logr^sin t, u ^ -2. We see that F(t)

can be taken to be a multiple of i~7(log ty.

If Fis any C1 nondecreasing function such that

,22) -jpSAa■"< oo
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then F satisfies the hypotheses of the theorem, that is F(t) = 0(t"y), and (14) holds.

To see this we apply integration by parts to obtain

LF{T)Ty + rlzimndt s rñüdt + iF(1).
y 7, y 7,    ,1-y y

Since the right-hand side is bounded, by (22), each of the terms on the left is

bounded for all T. It can be shown by a continuity argument that the theorem still

holds if F satisfies (22) but no continuity requirement is assumed on F.
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