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ANOTHER CHARACTERIZATION OF BLO

COLIN BENNETT1

Abstract. It is shown that a locally integrable function / on R" has bounded lower

oscillation ( / 6 BLO) if and only if / = MF + h, where F has bounded mean

oscillation ( F £ BMO) and MF < oc a.e., and h is bounded. Here, MF is a variant

of the familiar Hardy-Lit tie wood maximal function: MF = supç3xQ(F) (no abso-

lute values), where Q( F) is the mean value of F over the cube Q.

We consider real-valued locally integrable functions/on R". When Q is a cube in

R" with sides parallel to the coordinate axes, we denote by Q(f) the mean value of/

over Q. Define a maximal function Mf of f by

(Mf)(x)= sap Q(f)= sup-J-/" f(y)dy       (x G R"),
Q3* Q3x \Q\ JQ

where the supremum extends over all cubes Q that contain x. Note that / is not

assumed to be nonnegative so that Mf may take on negative values. However, it

follows from the differentiation theorem that Mf>f a.e. Moreover, it is clear | Mf\

is dominated by M\f\, the latter being the familiar Hardy-Littlewood maximal

function of/, and so, in particular, the maximal operator M is bounded on L2. We

shall make use of the obvious fact that if Q and Q' are two cubes with Q C Q', then

Q'( f) is dominated by (Mf)(x) for every x in Q, and so

(1) Q'(f) <wfMf       (QCQ').
Q

A locally integrable function / on R" is said to be of bounded mean oscillation

(f G BMO)if

(2) ll/llBMO = SUPß(|/-ß(/)|)
Q

is finite. The space BMO is a linear space and, when the constant functions are

factored out, the functional in (2) is a norm under which BMO is a Banach space. It

is well known (cf. [3, p. 227]) that replacing (2) by the corresponding quadratic

functional results in an equivalent norm on BMO. In particular, there is a constant c,

depending only on the dimension n, such that

(3) ("J-■/'\f(x) - Q(f)\2 dx)      <c||/l|BMO,
\ |ô| JQ I

for every cube Q in R".
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Recently, R. R. Coifman and R. Rochberg [2] have introduced the space BLO of

functions of bounded lower oscillation. The space is defined analogously to BMO

except that in (2) one subtracts from / the essential infimum

f0 = essinf/(x)
x<EQ

instead of the mean value Q( f ). Thus, a locally integrable function / on R" is in

BLO if

(4) I|71Iblo = suP(ô(/)-/0)
Q

is finite. The BLO property need not be preserved under multiplication by negative

constants so, in particular, BLO is not a linear space, and, despite the notation, the

functional in (4) is not a norm. It is easy to check, however, that || • ||BLO is

subadditive and positive-homogeneous.

Note that every L°° -function is in BLO, with

(5) ||/||blo < 2II/1U-     (/er),

and every BLO-function is in BMO, with

(6) ||/||bmo < 211/IIbu,       (/GBLO).

Using a representation theorem of Carleson for BMO-functions, Coifman and

Rochberg [2] have shown that every BMO-function is representable as the difference

of two BLO-functions. Moreover, they have shown that BLO-functions arise, mod-

ulo bounded functions, as logarithms of maximal functions. In other words, a locally

integrable function/belongs to BLO if and only if

(7) f=alogMF+h,

where a is a nonnegative constant, F is a nonnegative locally integrable function

whose maximal function MF is finite a.e., and h is an L°°-function.

Let us note also the result of [1] that if / G BMO (and has finite maximal

function), then the decreasing rearrangement/* (of |/|) is in BLO; in fact, this

condition characterizes the rearrangements of BMO-functions.

In this note, we shall obtain a different description of BLO-functions. We shall

show that they arise, modulo bounded functions, as the maximal functions MF of

BMO-functions F. Of course, we must exclude those F for which MF is identically

infinite.

We shall need two lemmas, the first of which may be regarded as a refinement of

Theorem 4.2 in [1].

Lemma 1. If F G BMO and if Q is any cube in R", then

(8) Q(MF)<c\\F\\BMo + infMF,
Q

where c is a constant depending on the dimension n. In particular, if MF is not

identically infinite, then MF G BLO and

(9) \\MF\\blo < c\\F\\bmo.
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Proof. Fix Q and let Q be the cube concentric to Q with dimensions three times

as large. Write

F= (F- Q(F))Xç + [q(F)Xq + FXqc] =G + H,

say.

By the Cauchy-Schwarz inequahty,

/   1 \'/2

Q(MG) <   —- fjMG)2dxj     < Ißf 1/2||MG|k(R»).

But M is bounded on L2, so using the definition of G, the fact that | Q | = 3" | 21,

and (3), we obtain

(10) Q(MG) <c||F||bmo.

Next we shall show that

(11) Ô(A777)«c||F||BMo + infMF,

which, together with (10) and the fact that F = G + 77, will establish the desired

result (8). In order to establish (11), it will suffice to show that MH(x) is dominated

by the right-side of (11) for every x G Q, and for this it will be enough to show that

(12) P(77)<c||7l|BMo + infMF

for every cube P in R" containing x.

The result follows directly from (1) if P does not meet Qc, for then 77 = Q(F) on

P and so P(H) = Q(F) *£ infç AfF.JSo suppose P nQc¥= 0, and let P' be the

smallest cube containing both P and Q. Since P contains the point x of Q, it is clear

that

(13) \P'\^c\P\

for some constant c depending only on the dimension n. Furthermore, from the

definition of H,

f(H-P'(F))<f\H-P'(F)\=f_\Q(F)-P'(F)\+f    _\F- P'(F)\
Jp Jp* Jq JPnQ'

«=/- + /     _)\F-P'(F)\=(\F-P'(F)\,
\Jq     Jp'nQ'l Jp'

so, using (2) and (13), we obtain F(77 - P'(F)) < c||F||bmo. Since P' D Q, an

appeal to (1) now gives

P(H) = P(H- P'(F)) + P'(F) ^ c||F||bmo + infMF.
Q

This establishes (12) and hence, as we remarked above, completes the proof of (8).

It is now clear from (8) that if (MF)(x) is finite at any one point x in R", then

(MF)(y) is finite a.e. on every cube Q containing x, hence on all of R". In that case,

we may subtract inf0 MF from each side of (8) and take the supremum over all Q to

obtain (9).
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We require one further lemma.

Lemma 2. A locally integrable function fon R" belongs to BLO if and only if Mf — /

belongs to L°°. Furthermore,

(14) \\Mf — /1|/°° —ll/llorn

Proof. Suppose first that / belongs to BLO. Let jc be any Lebesgue point of /

and let Q be any cube containing x. Then/(x) > fQ and so

ß(/) -/(*) £ Q(f) -Sq ̂ II/IIblo-

Taking the supremum over all cubes Q containing x, and then the supremum over all

Lebesgue points x of /, we find that Mf — /belongs to Lx and

(15) I|A//-/1|l-<||/||blo.

Conversely, suppose Mf — /belongs to L°° and let Q be any cube in R". Any point

x in Q for which

(16) f{x)<Q(f)-\\Mf-f\\L~

must satisfy

(Mf)(x) -f(x) > Q(f) -f(x) >\\Mf-f\\L~,
and consequently such points x constitute a set of measure zero. Hence the essential

infimum /e is at least as large as the value on the right-hand side of (16), and so

0(/)-/0<|M/-/1U».
Taking the supremum over all Q, we obtain the reverse inequality to (15), and hence

(14) is established.

Our main result is as follows.

Theorem. A locally integrable function f on R" belongs to BLO if and only if there

are functions h in L°° and F in BMO with MF finite a.e. such that

(17) f=MF+h.

Furthermore,

(18) ll/IU0~inf(||/Wo+||A|U-),

where the infimum extends over all representations of the form (17).

Proof. If /has a representation as in (17), then M F belongs to BLO by virtue of

Lemma 1. Since h is bounded, hence in BLO, we see that/is in BLO. Furthermore,

from (5) and (9),

II/IIblo <||MF||Blo +||A||blo < c||F]|bmo + 2\\h\\L~,

so taking the infimum over all representations (17) of /, we obtain

(19) II/IIblo <cinf(||F||BMo+||/i|k-).

Conversely, if / G BLO, then Mf is finite a.e., by Lemma 2. Furthermore, by the

same lemma, the function   / — Mf is bounded, and so / = Mf + ( f — Mf ) is a
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representation of the form (17) with F = / and h =/•-*- Mf. Moreover, from (6) and

(   h

||F||bmo +IIAIU- =||/||bmo +11/- A//1|z.» « 311/IIblo
so, combining this observation with (19), we establish (18).

Remarks. The above analysis can also be carried through for a cube Q0 instead of

all of R". In this case, BLO-functions on QQ are bounded below and so, by addition

of suitable constants, can be rendered nonnegative. In this case, one obtains a result

of the form (17) with M the usual Hardy-Littlewood maximal function supe Q(\f \).

I wish to thank my colleagues, Professors R. A. DeVore, W. Nestlerode, and R.
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