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ANOTHER CHARACTERIZATION OF BLO
COLIN BENNETT!

ABSTRACT. It is showr that a locally integrable function f on R” has bounded lower °
oscillation (f € BLO) if and only if f= MF + h, where F has bounded mean
oscillation (F € BMO) and MF < oo a.e., and h is bounded. Here, MF is a variant
of the familiar Hardy-Littlewood maximal function: MF = supg 5 , Q( F) (no abso-
lute values), where Q( F) is the mean value of F over the cube Q.

We consider real-valued locally integrable functions f on R”. When Q is a cube in
R” with sides parallel to the coordinate axes, we denote by Q( f) the mean value of f
over Q. Define a maximal function Mf of f by -

(Mf)(x) = sup O(f) = sup —j fdy  (xeR),
03x |0

where the supremum extends over all cubes Q that contain x. Note that f is not
assumed to be nonnegative so that Mf may take on negative values. However, it
follows from the differentiation theorem that Mf = f a.e. Moreover, it is clear | Mf|
is dominated by M |f|, the latter being the familiar Hardy-Littlewood maximal
function of f, and so, in particular, the maximal operator M is bounded on L2. We
shall make use of the obvious fact that if Q and Q’ are two cubes with Q C Q’, then
Q’(f) is dominated by (Mf )(x) for every x in Q, and so

(1) '(f) < mef (@co).

A locally integrable function f on R” is said to be of bounded mean oscillation
(f € BMO) if

) Iflsmo = sup o(If— e(f)l)

is finite. The space BMO is a linear space and, when the constant functions are
factored out, the functional in (2) is a norm under which BMO is a Banach space. It
is well known (cf. [3, p. 227]) that replacing (2) by the corresponding quadratic
functional results in an equivalent norm on BMO. In particular, there is a constant c,
depending only on the dimension n, such that

1/2

o) | 1) = @) s < et
for every cube Q in R".
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Recently, R. R. Coifman and R. Rochberg [2] have introduced the space BLO of
functions of bounded lower oscillation. The space is defined analogously-to BMO
except that in (2) one subtracts from f the essential infimum

fo= ciseigff(x)

instead of the mean value Q( f ). Thus, a locally integrable function - f on R” is in
BLO if

4) Mo = S‘-éP(Q(f) _fQ)

is finite. The BLO property need not be preserved under multiplication by negative
constants so, in particular, BLO is not a linear space, and, despite the notation, the
functional in (4) is not a norm. It is easy to check, however, that || - |5 o is
subadditive and positive-homogeneous.

Note that every L*-function is in BLO, with

(5) Moo <2lAl=  (f€L®),
and every BLO-function is in BMO, with
(6) Iflamo < 2 MleLo (f € BLO).

Using a representation theorem of Carleson for BMO-functions, Coifman and
Rochberg [2] have shown that every BMO-function is representable as the difference
of two BLO-functions. Moreover, they have shown that BLO-functions arise, mod-
ulo bounded functions, as logarithms of maximal functions. In other words, a locally
integrable function f belongs to BLO if and only if
@) f= alog MF + h,
where a is a nonnegative constant, F is a nonnegative locally integrable function
whose maximal function MF is finite a.e., and A is an L*-function.

Let us note also the result of [1] that if f € BMO (and has finite maximal
function), then the decreasing rearrangement f* (of |f|) is in BLO; in fact, this
condition characterizes the rearrangements of BMO-functions.

In this note, we shall obtain a different description of BLO-functions. We shall
show that they arise, modulo bounded functions, as the maximal functions MF of
BMO-functions F. Of course, we must exclude those F for which MF is identically
infinite.

" We shall need two lemmas, the first of which may be regarded as a refinement of
Theorem 4.2 in [1].

LeMMA 1. If F € BMO and if Q is any cube in R", then
(®) O(MF) < cl|Fllawo + int MF,

where c is a constant depending on the dimension n. In particular, if MF is not
identically infinite, then MF € BLO and

) |MF\|sLo < c||Fllamo.
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ProoF. Fix Q and let Q be the cube concentric to Q with dimensions three times
as large. Write
F=(F-Q(F))xg+[0(F)X5+ FXgc| =G+ H,
say.

By the Cauchy-Schwarz inequality,

-1/2

1/2
Q(MG) < (I—;—l fQ (MG)’ dx) <|0|" " IMG|| ).

But M is bounded on L2, so using the definition of G, the fact that | Q|= 3"| Q|,
and (3), we obtain

(10) Q(MG) < c||Fllsmo.
Next we shall show that
(11) O(MH) < c||Fi|zmo + ingF,

which, together with (10) and the fact that F = G + H, will establish the desired
result (8). In order to establish (11), it will suffice to show that MH(x) is dominated
by the right-side of (11) for every x € Q, and for this it will be enough to show that

(12) P(H) < c|Fllsmo + iIQlfMF

for every cube P in R" containing x.

The result follows directly from (1)-if P does not meet Q-‘ for then H = Q(F) on
P and so P(H) = Q(F) < infy, MF. So suppose P N Q¢+ @, and let P’ be the
smallest cube containing both P and Q. Since P contains the point x of Q, it is clear
that

(13) |P’| < c|P|

for some constant ¢ depending only on the dimension n. Furthermore, from the
definition of H,

[(H =P <[ 1= P(F)=[10(F) = P(F)|+ [ |F=P(F)

(/+f )IF P(F)I—fIF P'(F)|,

so, using (2) and (13), we obtain P(H — P'(F)) < cl| Fllgyo- Since P’ D Q, an
appeal to (1) now gives

P(H) = P(H — P'(F)) + P'(F) < c||Fllsmo + inf MF.

This establishes (12) and hence, as we remarked above, completes the proof of (8).

It is now clear from (8) that if (MF)(x) is finite at any one point x in R”, then
(MF)(y) is finite a.e. on every cube Q containing x, hence on all of R". In that case,
we may subtract inf, MF from each side of (8) and take the supremum over all Q to
obtain (9).
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We require one further lemma.

LEMMA 2. A locally integrable function f on R" belongs to BLO if and only if Mf — f
belongs to L™. Furthermore,

(14) v I1Mf — Al = AlsL0-
PRrOOF. Suppose first that f belongs to BLO. Let x be any Lebesgue point of f
and let Q be any cube containing x. Then f(x) = f, and so '

o(f) = f(x) < 2(f) — fp <IAbro-

Taking the supremum over all cubes Q containing x, and then the supremum over all
Lebesgue points x of f, we find that Mf — f belongs to L* and
(15) IMf = fllz= <l Allero-

Conversely, suppose Mf — f belongs to L™ and let Q be any cube in R". Any point
x in Q for which
(16) f(x) < 0(f) —1Mf — fllo-
must satisfy /

(Mf)(x) = f(x) = Q(f) — f(x) >|Mf — fll.=,

and consequently such points x constitute a set of measure zero. Hence the essential
infimum f, is at least as large as the value on the right-hand side of (16), and so

O(f) = fo <IMf = fllo~.
Taking the supremum over all Q, we obtain the reverse inequality to (15), and hence

(14) is established.
Our main result is as follows.

THEOREM. A locally integrable function f on R" belongs to BLO if and only if there
are functions h in L* and F in BMO with MF finite a.e. such that

(17) f=MF+ h.
Furthermore,
(18) IAlsLo ~ inf(l| Fllamo +|Allz=),

where the infimum extends over all representations of the form (17).

PrOOF. If fhas a representation as in (17), then MF belongs to BLO by virtue of
Lemma 1. Since A is bounded, hence in BLO, we see that f is in BLO. Furthermore,
from (5) and (9),

IAlsLo <l MFllsLo +[|AllsLo < cf| Fllamo + 2||A]l 2=,
so taking the infimum over all representations (17) of f, we obtain

(19) IAlsLo < cinf(|| Fllamo + [|A]lz=).

Conversely, if f € BLO, then Mf is finite a.e., by Lemma 2. Furthermore, by the
same lemma, the function f— Mf is bounded, and so f=Mf+ (f— Mf) is a
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representation of the form (17) with F = f and h = f — Mf. Moreover, from (6) and
(14),

IFllsmo + [lAll= = flemo +1If — Mfll = < 3| o

so, combining this observation with (19), we establish (18).

REMARKS. The above analysis can also be carried through for a cube Q,, instead of
all of R". In this case, BLO-functions on Q, are bounded below and so, by addition
of suitable constants, can be rendered nonnegative. In this case, one obtains a result
of the form (17) with M the usual Hardy-Littlewood maximal function sup, O(| f |)-

I wish to thank my colleagues, Professors R. A. DeVore, W. Nestlerode, and R.
Sharpley, for some interesting discussions concerning this material.
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