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A BOUNDED ANALYTIC FUNCTION IN THE UNIT DISK

WITH A LEVEL SET COMPONENT

OF INFINITE LENGTH

K. F. BARTH AND J. G. CLUNIE1

Dedicated to the memory of David L. Williams

Abstract. The authors construct a bounded analytic function in the unit disk with a

level set component of infinite length. The example is of the form exp iB(z) where

B(z) is a Blaschke Product.

1. Introduction. In [6] Piranian and Weitsman showed that bounded analytic

functions in the unit disk can have level sets of infinite length. Subsequently a

number of authors have obtained results of this kind [1, 5, 3]. In their paper Piranian

and Weitsman raise the question as to whether or not a function analytic and

univalent in the unit disk can have a level set of infinite length. Recently Hayman

and Wu [3] have shown that this is not possible. Another proof of this result has

been given by Garnett, Gehring and Jones [2].

The examples in the above papers of bounded analytic functions with level sets of

infinite length have disconnected level sets whose components are all of finite length

apart, perhaps, from that of Peter Jones [4]. Whether or not the construction of Peter

Jones leads to an example with a level set component of infinite length is not known

and his proof gives no indication one way or the other.

In this paper we shall give an explicit construction of a bounded analytic function

having a level set component of infinite length. That the component is of infinite

length is due to its being highly branched and the case of an unbranched component

of infinite length is still unsettled. There are many examples of unbounded holomor-

phic functions with an unbranched level set component of infinite length. One such

function is the following: Let 5, and S2 be two disjoint spirals each of which is

contained in D = (| z |< 1} and tends to all of C = {| z |= 1). Then, using standard

approximation techniques, one can construct a function /, holomorphic in D with

nonzero derivative, that approaches infinity on 5, and zero on S2 as | z \ -* 1. It

follows easily that every level set L(X, f) = {z: \f(z)\— X), 0 < X < oo, has an

unbranched component of infinite length.
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2. A bounded analytic function with a level set component of infinite length.

Theorem 1. There exists a function f, analytic and bounded in the unit disk, such

that L(l, f) has a component of infinite length.

The example is of the form/(z) = exp(iB(z)) where B(z) is a Blaschke product of

the form W%x[(pr - z)/(\ - prz)]"' and 0 < p„ < 1. Since \f(z) | = 1 exactly when

B(z) is real, it suffices to estimate the length of the set in the unit disk on which

B(z) is real. This is accomplished by a sequence of lemmas.

Lemma 1. Let p and 6 be real numbers satisfying ¿<p<l, O<0< 7r/2, and

sin 6/2 > 1 - p. Then

,m_(l-P2)sinfl

satisfies

^£<d(g)<47r(1~p)
46 v   ' 6

Proof. First we note that

„/,       ■>\ .   6        6
2(1 - p¿)sin-cos-

d(6) =

(1 -p2) + 4psin2|
2

and then use the inequalities 0 < p < 1 and cos 6/2 > 1/ -fl to obtain

(1 - p)sm -

d(6) >-

The inequality sin 6/2 > 1 - p yields

8 sin y

(1 - P)2 + sin2|

Finally, using \ < p < 1, we obtain

(2) ^)^^^^%öf = MV^i-   D
v'fj

sm2

If in (1) and (2) we set 6 — -nk/n, we obtain

"(1-P) ^ A**\ ^4w(l-p)
« ^«(t) A:

Lemma 2. 7/we sei 0 = tt/c/w, íAen í/ie hypotheses of Lemma 1 and, in addition, the

inequality cos0>p are satisfied for any p, n, and k satisfying the inequalities

| < p < 1, n(\ - p) < 1, and 1 < k < ^1 - p.



564 K. F. BARTH AND J. G. CLUNIE

Proof. Note that 3 *s p < 1 imphes that ^-fl — p < { and thus 6 — irk/n < w/2

for A: satisfying 1 < k < ^n-fl — p. Hence we have

j2 „2^.     ,       62      ,       tt2A:2 ^ ,       tt2 / 1   2/1        ,\

,2

= l-^r(l-p)>l-(l-p) = p.
18

Also,

.   6      2 6       1 ttk      1
sin - s* - - =-> - > 1 - p.    D

2       ir 2       it   n        «

Now, suppose 0 < p < 1 and set

w = (z — p)/(l — pz)   and   z = (w + p)/ (1 + pw).

Let p < P < 1. The line {w: Re w = -P} maps onto the circle in the z-plane with

the points —(R — p)/(l — pR) and 1/p of the real z-axis as ends of a diameter.

Consider, in the z-plane, the chord common to this image circle and the unit circle

and let it be of length 2d.

Lemma 3. Let p, R and d be defined as above. Then

„2
d=   l;p   /r^

1 + p2 - 2pR

Proof. Suppose the chord meets the real axis at the point f. Then

1-f2 = i/2=(f+^:=_P_)(i_f)

and hence we find that

2p-P(l+p2)
f =

1 + p2 - 2pR

Consequently,

j2_ (l+p2-2pR)2-(2p-R(\+p2))2       (i-JR2)(1_p2)2

2 /,    ,      ->        „    „\2
(l+p2-2pP) (1 + p2 - 2pR)

and we obtain

,2

d= —ifü—/T3^. □
1 + p2 - 2pÄ

When we use Lemma 3, we shall set R — cos 6 where 6 = wA;/n (compare with

Lemma 1).

Lemma 4. Let T(z, p, n) = [(p - z)/(\ - pz)]" and let S(p, n) - {z: | z |< 1 and

T(z, p, n) is real}. If \ < p < 1 and n(\ — p) < 1, then L(p, n) 5*

[«(1 — p)\n(jn^j\ — p)]/4ir w/zere L(p,n) is the length of S(p, n).
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Proof. Note that S(p, n) consists of the preimages, under the map

(p - z)/(l - pz), of the rays {w: w — re""", 0 < r < 1 and <p = trj/n, 1 </ < 2«}.

For convenience in applying the previous lemmas we relabel these as {w: w = -re~'8,

0 < r < 1, and 6 = irk/n, 1 *£ k < 2n). These preimages are, of course, just subarcs

of circles through z = p and orthogonal to (| z | = 1}. The length of such a subarc is

greater than the distance of its point of intersection with the unit circle from the real

axis. Hence it suffices to estimate the length d of the chords mentioned in the

paragraph preceding the statement of Lemma 3 (-R — -cos 6, 6 = km/n, k —

1,2,...,2m). Using Lemmas 1, 2 and 3, we obtain for N = [^njl — p],

L(p,n)>Zd[-)>l^]r-

= nïlzjù. 2!■■„ Z!Íl_Lp)ln( i /TT7).
4ir       ._. k 4m \ 6 /

<r= 1

Lemma 5. Gi'oe/i any e > 0 and any 6 > 0 inere exista an a > 0 such that \ T(z, p, n)

— 11< e/or z G 778 = (| z |< 1} (~1 {| z — 1 |> 8} and any p, n satisfying n(l - p) <

a.

Proof. Note that T(-l, p, n) = 1 and

r(z,p,n) = n(l-p)(^)n_1-¡Tf^.

Thus | 7"(z, p, n) |< n(l — p) • 1 • Äg for z G Hs. Here ÍTS is a constant which

depends on 8 only (z G Hs, 0 < p < 1). Thus | T(z, p, n) - 11< n(l - p)Ä"s for

z E Hs which yields the desired result.    D

Lemma 6. Given any v > 0 there exists an a> 0 si/cn í/iaí a connected subset of

S(p,n) of length > [n(l - p)ln(injl - p)]/4ir (see Lemma 4) is contained in

{\z — 11< ■>)} for n andp such that n(\ — p)<a andn even.

Proof. We shall prove that a may be chosen so that the chords dk whose lengths

are estimated in Lemma 4 are contained in {| z — 1 |< tj). It follows readily that

S(p, n) is also contained in {|z — 11< i/}. Recall that dk < 4n(l — p)/k. Also

observe that d = 1 requires f = 0 and this in turn requires that R = 2p/(l + p2).

Thus, dk can be made as small as we like by choosing n(l — p) sufficiently small and

it remains to show for k satisfying 1 ^ k < ^n^l — p that Rk = cos(wA:/n) <

2p/(l + p2) (so that the chord of length 2dk is "near" z = 1 rather than z = -1). It

suffices to consider the case k — 1. To keep the calculations as simple as possible, we

shall compare instead 1 — cos2(wA:/n) = sin2(7rA;/n) with 1 — [2p/(l + p2)]2 =

[(1 — p2)/(l + p2)]2 and we need to prove that

sm2(*k/n)>[(l-p2)/(\+p2)]2.
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Now if a < { and k = 1, we have

4        IT2 2\
sin26 > — ■ — > 4(4(1 - p) )

2    Ij\+P\\ (1-P2)2mMim-i + p¿/      (l + P2)2

since [(1 + p)/(l +p2)]2<4if0<p< 1.    D

Note that the only requirements on n and p so that Lemmas 1 through 6 are

satisfied are that ¿ < p < 1 and n(l — p) is sufficiently small. Thus using Lemmas 1

to 6 and always choosing n to be even, it follows in a straightforward fashion, since

T(l, p, n) = 1 for even n, that we can construct a convergent Blaschke product

B(z) = E%x[(z - p„)/(l - pvz)]"> such that at the y'th step the length of the

preimage of the segment (-1,1) by the partial product

*,(*)■ n [(z-pj/(i-p,z)]"'

is increased by (see Lemma 4)

Since (4) equals

2wy(l - P,)ln[",(l - Pj)] + 2nÁl ~ p>)ln nJ '(5) Sir

we can make (5) as large as we like by choosing ny as large as necessary and then

choosing pj close enough to one to make n -(1 — pf) approximately equal to the

desired value e¡. It follows easily that eiB{z) has the desired properties.
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