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A REMARK ON EXPANDING MAPS

KUNG-CHING CHANG AND LI SHUJIE

ABSTRACT. In this paper we discuss the following problem stated by L.

Nirenberg: Let T be an expanding map H —► H (H is a Hubert space) with

T(0) = 0. Suppose T maps a neighborhood of the origin onto a neighborhood

of the origin. Does T map H onto if?

We answer positively the problem when T is differentiable.

In [1] L. Nirenberg stated the following open problem:

Suppose T is a continuous map 77 —► 77 (77 is a Hubert space) which is expanding,

i.e. ||Ti — Ty|| > ||i — y\\, and T(0) = 0. Suppose T maps a neighborhood of the
origin onto a neighborhood of the origin. Does T maps 77 onto 77? If we consider

aT instead of T for a real a > 1, with no loss of generality, we may assume that

|[!Tîr^7V||>a||x-y|r.
When 77 is a Euclidean space 77", we know that it is true because of the Domain

Invariance Theorem (in this case the condition that T maps a neighborhood of the

origin onto a neighborhood of the origin can be omitted). When 77 is a Hubert

space there is a Domain Invariance Theorem for the following cases:

(i) T = I — C where 7 is the identity and C is a compact operator, or

(ii) T is a strongly monotone operator.

(In case (i) see [2], in case (ii) see [3].)   But, in general, the Domain Invariance

Theorem does not hold; a simple counterexample is when T is the shift operator.

In this paper we answer positively the problem when T is differentiable.

We express our gratitude to Professor Louis Nirenberg and Dr. Brian Rowley for

their useful suggestions.

LEMMA 1. Suppose T is an expanding map from a Banach space X into a

Banach space Y, T(Q) = Q, T maps a neighborhood Nx(0) of the origin ofX onto a

neighborhood 7Vy(0) of the origin ofY, and T is Fréchet-differentiable at the origin

ofX, then [T'(O)]-1 exists and \\[T'(Q)]-l\\ < 1/a < 1.

PROOF. First we prove RT'(0) (range of T'(0)) is dense in Y. If the statement

of the lemma is not true, there must exist a zo E Y* (Y* is the conjugate space)

such that zo(T'(0)x) = 0 Vi G X.

Set

r(*) = T(o) + r'(o)z +o(||z||),

we have

zo(T(x)) = zo(T(0) + T'(0)x) + 20(0(||x||)).
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There exists a zo E Y such that 20(^0) = ll^ollll^oll*- We know that T maps 7VX(0)
onto Ny(0) from assumption, so that there exists {xn} C Nx(0) such that Txn =

anz0. By ||rin|| > ||xn|| and an -»■ 0 we find xn -* 0 and

(1) |*bCT(*»))| = \z0(anz0)\ = \\anZo\\\\z0\U = IK^IJM* ^ IMHNI.-

On the other hand

(2) |*b(IMI = \zo(r(0)xn) + zo(0(\\xn\\))\ = l«b(0(||«„||))| < ll*o||.||0(||xn||)||.

By (1) and (2) we have

IMI < ||0(||xn||)||    asxn-0

This contradiction shows RT'(0) is dense in Y.

Second we show RT'(0) = Y. It is sufficient to prove 7?T"(0) is a closed set in

Y.
Suppose T'(0)xn = yn —► y. We know that there exists the inverse of T'(0)

on RT'(0). Since T is expansive therefore ||[T'(0)]_1|| < 1/a < 1 on RT'(0) and

xn = [HO)]-1^, ||x„ - xm|| < IKT'ÍO)]-1!!!!^ - ym|| -» O, so that there exists
x E X such that xn —► x and T"(0)x = y, this fact show [r'ÍO)]-* exists and

\\[T'(0)]-1\\<lonY.   Q.E.D.
The following Lemma 2 is an immediate corollary of the Theorem 2 in [4]. We

only need the following special case in [4].

PROPOSITION 1. Suppose X and Y are real Banach spaces, f is a map from X

into Y, f has a linear Gâteaux differential f'(x), a bounded linear operator, at every

point x EX, andN([f'(x)]*) = 0 Vx G X, where N([f'(x)]*) denotes the null space

of[f'(x)*} and [f'(x)]* denotes the adjoint operator of[f'(x)}. If f(X) is closed in Y

then f(X) = Y.

Lemma 2. Suppose X and Y are real Banach spaces, T is a map from X into

Y with closed T(X), T has a linear Gâteaux differential T'(x), a bounded linear

operator, at every point x G 77. If [T'(x)]_1 exists Vx G X then T(X) = Y.

PROOF. By Proposition 1 it is sufficient to prove N[T'(x)*} = 0 Vx G X. If it

is not true then there must exist a xo G X such that JV^T^zo)*) ^ 0, so that there

exists »J fi 0, y*Q G Y* such that [T'(x0)]*y^(x) = 0, i.e. y^(T'(x0))(x) = 0 but

RT'(xo) = Y therefore we have 2/5 = 0 ^is is a contradiction.    Q.E.D.

LEMMA 3. Suppose Ti,T2 are linear operators and 7\ has a bounded inverse

Tf1 with HTf1!! < 1. 7/||Ti — T2|| < 1 holds, then T2 has a bounded inverse T^1.

PROOF. We know T2 = 7\(7 + (T2 - T^Tf1), since ||(ra - TJT^W <
\\T2 — TillHTf1!! < 1, so that [7 + (72 — 7i)Tf 1]_1 exists and T2 has a bounded
inverse.     Q.E.D.

THEOREM 1. Suppose X is a real Banach space and Y is a Banach space,

also suppose T is a expanding map from X into Y, T is Fréchet-differentiable in

X and Vxo G X we have ÏÏmx_Xo ||7"(x) — T'(x0)\\ < 1, T(0) = 0 and T maps

a neighborhood of the origin of X onto a neighborhood of the origin ofY. Then

TX = Y.
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PROOF. Firstly, it is easy to show that the image of any expanding map is

closed. If the statement of the theorem is not true then by Lemmas 2 and 3, we

know that there exists a nonempty closed set S G X, such that [T'(x)] does not

have an inverse Vx G S. From Lemmas 1, 3 and the assumption of the theorem,

we have a neighborhood of the origin, which does not intersect with S. Therefore

there exists a ray intersecting with S, say {tx \ t E R'+}- Then there is a r > 0

such that tx E S for t E [0, r) and rx E S. Let xn = (r — l/n)x, we have xn G S

i.e. [T'(xn)]~13, and we have HfT'^n)]-1|| < 1/a < 1. Again, by assumption

m_\\T'(xn)-T'(rx)\\<l,
xn-*rx

and by Lemma 3 we know that [T'(rx))~l exist, which contradicts rx E S.    Q.E.D.

REMARK 1. In particular when TEC1 Theorem 1 is true, we could prove it

by the open and closed mapping argument instead of Lemma 2.

REMARK 2. Suppose X = Y = 77 is a Hubert space, T is an expanding

map and has a linear Gâteaux differential 7"(x) at every point x G 77, which is

selfadjoint. Then T maps 77 onto 77. We could find this conclusion from the fact

that the residual spectrum of a selfadjoint operator is empty.

Remark 3. In Theorem 1 if T satisfies

\\Tx-Ty\\>a\\x-y\\   Vx,yEX,

where a > 0 and if

hm ||T'(x) - T'(xo)|| < a   Vx0 G X.
X—»So

Then TX = Y.
The following Proposition 2 is the Theorem 5.1 in [5].

PROPOSITION 2. Suppose X is a Banach space, F is an operator from X into

the conjugative space X*, F has a linear Gâteaux differential DF(x, h) at every

point of the ball B(xo, r). The functional (DF(X, hi), h2) is continuous in x at every

point ofB(xo, r), the operator F is potential in B(xo, r), then the bilinear functional

(Df(x, hi), h2) is symmetric for every x E B(xo, r).

By Proposition 2 we have the following result:

THEOREM 2. Suppose T is an expanding map from 77 into H, T EC1 and T is

a potential operator, then T maps 77 onto 77.

PROOF. For any xo G 77 there is a ball 77(xo, r) such that in which the conditions

in Proposition 2 are satisfied. Therefore (DT(x, hi), h2) is symmetric for every x G

B(xo, r) and since T is Fréchet-differentiable we know that 7"(x) is a selfadjoint

operator Vx G 77. By Remark 2 we have TH = 77.     Q.E.D.
The referee has pointed out that Theorem 2 extends to a reflexive Banach space.
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