JUMPING TO A UNIFORM UPPER BOUND

HAROLD HODES

Abstract

A uniform upper bound on a class of Turing degrees is the Turing degree of a function which parametrizes the collection of all functions whose degree is in the given class. I prove that if \underline{a} is a uniform upper bound on an ideal of degrees then \underline{a} is the jump of a degree \underline{c} with this additional property: there is a uniform bound $\underline{b}<\underline{a}$ so that $\underline{b} \vee \underline{c}<\underline{a}$.

Fix a recursive pairing function $(x, y) \mapsto\langle x, y\rangle$ from $\omega \times \omega$ onto ω. For $f \in{ }^{\omega} \omega$, let $(f)_{x}(y)=f(\langle x, y\rangle)$; for $\mathscr{F} \subseteq^{\omega} \omega$, f parametrizes \mathscr{F} iff $\mathscr{F}=\left\{(f)_{x} \mid x \in \omega\right\}$. Let \leqslant_{T} and \equiv_{T} be Turing reducibility and Turing equivalence on ${ }^{\omega} \omega$; a degree is an equivalence class under \equiv_{r}. Where I is a set of degrees, a degree \underline{a} is a uniform upper bound (u.u.b.) on I iff some $f \in \underline{a}$ parametrizes $\cup I . I$ is an ideal iff I is downward closed and closed under join; I is a jump ideal iff it is also closed under jump. Let I be a countable jump ideal and \underline{a} be an upper bound on I. What can we say about degrees which jump to \underline{a} ? Since $\underline{o}^{\prime} \in I$, Friedberg's theorem [2, p. 265] provides such a \underline{b}; but \underline{b} is peculiar in that $\underline{b}^{\prime}=\underline{o}^{\prime} \vee \underline{b}$. Since $\underline{o}^{(2)} \in I$, we can relativize to \underline{o}^{\prime} and obtain $\underline{b} \geqslant \underline{o}^{\prime}$; but now $b^{\prime}=\underline{o}^{(\overline{2})} \vee \underline{b}$. We would like to have $\underline{c} \vee \underline{b}<\underline{b}^{\prime}=\underline{a}$ for all $\underline{c} \in I$. In this note we show that if \underline{a} is a u.u.b. on I, we can do this and more.

Theorem. If \underline{a} is $a u . u . b$. on I there are \underline{b} and $\underline{c}, \underline{c} a u . u . b$. on I and $\underline{c} \vee \underline{b}<\underline{b}^{\prime}=\underline{a}$.
We prove this by using the trick of [3] within a construction like that used in [1, Theorem 3]. Fix $f \in \underline{a}, A \in \underline{a}, f$ parametrizing $\cup I$ and $A \in{ }^{\omega} 2$. Where K is a sequence $\left\langle n_{0}, \ldots, n_{l-1}\right\rangle ; \hat{K}=\left\langle(f)_{n_{0}}, \ldots,(f)_{n_{l-1}}\right\rangle$. If $u=\left\langle g_{0}, \ldots, g_{l-1}\right\rangle$ is a sequence of functions in ${ }^{\omega} \omega, \hat{u}$ is the partial function given by $\hat{u}(\langle i, x\rangle)=g_{i}(x)$ for $i<l ; u^{\vee}$ is the total extension of \hat{u} such that $u^{\vee}(\langle i, x\rangle)=0$ for $i \geqslant 0$. We force with the language of arithmetic supplemented by the uninterpreted function symbol ' \underline{g} ' and predicate ' \underline{B} '. A condition is a pair $\langle K, T\rangle$, where $K \in \omega^{<\omega}$ and T is a total recursive perfect tree represented by its Gödel number. $\langle K, T\rangle \Vdash g(\underline{x})=y$ iff $(x)_{0}<\operatorname{lh}(K)$ and $(f)_{(x)_{0}}\left((x)_{1}\right)=y ;\langle K, T\rangle \Vdash \frac{B}{\frac{B}{x}}(\underline{x})$ iff $x<\operatorname{lh} T(\langle \rangle)$ and $T(\langle\overline{)}(x)$ $=1$. A sequence δ is compatible with K iff $\hat{K} \cup \delta$ is a function (viewing δ as a function on $\operatorname{lh}(\delta)$); K floods δ iff $\delta \subseteq \hat{K}$. Note that if δ is compatible with K, some extension of K floods δ. Recall Sasso's starred subtrees: $T^{*}(\delta)=T\left(\delta^{*}\right)$ where $\delta^{*}=\left\langle(\delta)_{0}, 0,(\delta)_{1}, \ldots,(\delta)_{\operatorname{lh}(\delta)-1}, 0\right\rangle$ for $\delta \in \operatorname{Str}$.

[^0]Here is how we would like our construction to proceed. $K_{0}=\langle \rangle, T_{0}=\mathrm{id} \uparrow \mathbf{S t r}$. Suppose we have $\left\langle K_{2 j}, T_{2 j}\right\rangle$. Stage $2 j+1$: Fix $z=z\left(T_{2 j}\right)$, depending uniformly on (the Gödel number of) $T_{2 j}$ such that for all $B \in\left[T_{2 j}\right],\{z\}^{B}(z) \downarrow$ iff $B \notin\left[T_{2 j}^{*}\right]$.

Case 1. There are $\delta \in \operatorname{Str}$ and ρ a finite sequence compatible with $K_{2 j}$ so that $\{s\}^{T_{2 j}\left(\delta^{*}\right) \oplus\left(\hat{K}_{2 j} \cup \rho\right)}(z)=0$. Let $\left\langle\delta_{2 j}, \rho\right\rangle$ be the least such. Let $K_{2 j+1}$ be the least extension of $K_{2 j}$ flooding ρ. Let $T_{2 j+1}(\tau)=T_{2 j}\left(\delta_{2 j}^{* \cap}\langle 1,1\rangle^{\cap} \tau\right)$.

Case 2. Otherwise. Let $K_{2 j+1}=K_{2 j}$ and $T_{2 j+1}=T_{2 j}^{*}$.
Stage $2 j+2 . K_{2 j+2}=K_{2 j+1}{ }^{n}\langle j\rangle$. Case 1. There is a $\delta \in \operatorname{Str}$ so that $\{j\}^{T_{2 j+1}(\delta)}(j) \downarrow$. Let $\delta_{2 j+2}$ be the least such δ. Case 2. Otherwise; let $\delta_{2 j+2}=\langle \rangle$. Let $T_{2 j+2}(\tau)=T_{2 j+1}\left(\delta_{2 j+2}^{n}\langle A(j)\rangle^{n} \tau\right)$ for all $\tau \in$ Str.

Let $g=\bigcup_{i} \hat{K}_{i} ; B=\cap_{i}\left[T_{i}\right]$. Clearly g parametrizes $\cup I$. We selected $T_{2 j+1}$ to meet the requirement $B^{\prime} \neq\{j\}^{B \oplus g}$. For if Case 1 obtained at stage $2 j+1, B \notin\left[T_{2 j}^{*}\right]$; so $\{z\}^{B}(z) \downarrow$, so $B^{\prime}(z)=1$; but we have chosen $K_{2_{j+1}}$ to make sure that $\{j\}^{B \oplus g}(z)$ $=0$. If Case 2 obtained, $B \in\left[T_{2 j}^{*}\right]$; so $\{z\}^{B}(z) \uparrow$; so $B^{\prime}(z)=0$; but either $\{j\}^{B \oplus g}(z) \uparrow$ or it converges to something different from 0 . To compute A from B^{\prime} we must recover $\left\langle T_{s}\right\rangle_{s \in \omega}$ recursively in B^{\prime}, as a sequence of Gödel numbers. Suppose we have $T_{2 j}$. We have arranged to have B signal to B^{\prime} the choice of case and the value of $\delta_{2 j+1}$ in Case 1 . For B^{\prime} can tell whether $B \in\left[T_{2 j}^{*}\right]$. If not, we find the longest δ such that $T_{2 j}\left(\delta^{*}\right)$ is an initial segment of B; this is $\delta_{2 j+1}$; we can now obtain $T_{2 j+1}$. If $B \in\left[T_{2 j}^{*}\right]$, we know that $T_{2 j+1}=T_{2 j}$. An oracle for B and 0^{\prime}, which B^{\prime} provides, suffices for carrying out even steps, that is, obtaining $\delta_{2 j+2}$; from this we get $A(j)=i$ iff $T_{2 j+1}\left(\delta_{2 j+2}^{n}\langle i\rangle\right)$ is compatible with B; so we recover $A(j)$, and thus get $T_{2 j+2}$. Furthermore B^{\prime} is recursive in the entire construction. The only hitch is that the construction just described is not recursive in f. For at stage $2 j+1$ we needed to answer a Σ_{1}^{0} question about $K_{2 j}$.

Fortunately, since f is a parametrization of $\cup I$ (and not just $\cup I \cap^{\omega} 2$), we can guess at an m such that $(f)_{m}=\left(\hat{K}_{2 j}^{\vee}\right)^{\prime}$, so that from a certain point on our guesses settle and are right. So we modify the previous construction using the guessing technique of [1]. Working on requirement $B^{\prime} \neq\{j\}^{B \oplus g}$, we may guess that we are in Case 2 , when actually we are in Case 1 ; so we may end up with $B^{\prime}(z)=1$ and, contrary to our intentions, $\{j\}^{B \oplus g}(z)=1$, where $z=z(T)$ and T is the tree which we thought would meet the requirement. But then we shall just go back and attack that requirement again. At the end of stage s we shall have $K_{0}^{s}, \ldots, K_{d(s)}^{s}$, our guesses at $K_{0}, \ldots, K_{d(s)}$, a tree T_{s} (no guessing here!), a sequence $\rho_{s}: s \rightarrow \omega$ which is the portion of g to which we are definitely committed, and a number $h(s)$ which tells us how far we have searched for witnesses to being in Case 1 on odd conditions. For $2 j+1<d(s), K_{2 j+1}^{s}$ was instituted by an attack on the requirement $B^{\prime}=\{j\}^{B \oplus g}$; the stage at which this attack occurred was $t(j, s) \leqslant s$. Let $c(j, T, K, \tau, q)=1$ iff our q th guess at $\left(\hat{K}^{\vee}\right)^{\prime}$ says that there are $\delta \in \operatorname{Str}$ and ρ compatible with K and with τ such that $\{j\}^{T\left(\delta^{*}\right) \oplus\left(\hat{K}^{\prime} \cup \rho\right)}(z(T))=0 . c(j, T, K, \tau, q)=2$ otherwise. (Here τ is a finite sequence of numbers.)

Let $K_{0}^{0}=\langle \rangle, \rho_{0}=\varnothing, h(0)=0, d(0)=0, T_{0}=$ id Str. We describe stage $s+1$. Suppose we have $K_{0}^{s}, \ldots, K_{d(s)}^{s}, \rho_{s}, h(s), T_{s}, d(s)=2 j_{0} .2 j+1<d(s)$ is bad at
(s, r) iff $c\left(j, T_{t(j, s)-1}, K_{2 j}^{s}, \rho_{t(j, s)-1}, h(t(j, s))\right)=2$ and $c\left(j, T_{t(j, s)-1}, K_{2 j}^{s}, \rho_{t(j, s)-1}\right.$, $h(s)+r+1)=1$. In other words, when we instituted $K_{2 j}^{s}$ at stage $t(j, s)$ we thought we were in Case 2, but our $h(s)+r+1$ st guess at $\left(\hat{K}_{w j}^{s \vee}\right)^{\prime}$ says that we were in Case 1 . Search for the least r such that for some $j \leqslant j_{0}$:
all $2 j^{\prime}+1<2 j+1$ are nonbad at (s, r);
if $j<j_{0}, 2 j+1$ is bad at (s, r);
if no $2 j+1<d(s)$ is bad at $(s, r), j=j_{0}$;
if $c\left(j, T_{s}, K_{2 j}^{s}, \rho_{s}, h(s)+r+1\right)=1$, then for some δ and ρ which witness this fact, $\langle\delta, \rho\rangle \leqslant h(s)+r$.
There is such an r, and the least one determines a unique such j. Let $h(s+1)=h(s)$ $+r+1, d(s+1)=2 j+2, K_{i}^{s+1}=K_{i}^{s}$ for all $i \leqslant 2 j$. We now attack $B^{\prime} \neq\{j\}^{B \oplus g}$.

Case 1. $c\left(j, T_{s}, K_{2 j}^{s+1}, \rho_{s}, h(s+1)\right)=1$. Fix the least $\langle\delta, \rho\rangle$ so that δ and ρ witness this fact. Let $K_{2 j+1}^{s+1}$ be the least extension of $K_{2 j}^{s+1}$ flooding ρ and ρ_{s}; let $K_{2 j+2}^{s+1}=K_{2 j+1}^{s+1}{ }^{n}\langle j\rangle$. Let $T_{s+1}^{-}(\tau)=T_{s}\left(\delta_{s+1}^{*}{ }^{n}\langle 1,1\rangle^{\cap} \tau\right)$ for all $\tau \in$ Str, where $\delta=$ δ_{s+1}.

Case 2. $c\left(j, T_{s}, K_{2 j}^{s+1}, \rho_{s}, h(s+1)\right)=2$. Let $\left.K_{2 j+1}^{s+1}=K_{2 j}^{s+1}, K_{2 j+2}^{s+1}=K_{2 j+1}^{s+1} \cap j\right\rangle$; let $T_{s+1}^{-}=T_{s}^{*}$. In either case, let ρ_{s+1} be the least extension of ρ_{s} compatible with $K_{2 j+2}^{s+1}$. If there is a $\delta^{\prime} \in \operatorname{Str}$ such that $\{s\}^{T_{s+1}^{-}\left(\delta^{\prime}\right)}(s) \downarrow$, let δ_{s+1}^{\prime} be the least such; otherwise $\delta_{s+1}^{\prime}=\langle \rangle . T_{s+1}(\tau)=T_{s+1}^{-}\left(\delta_{s+1}^{\prime}{ }^{n}\langle A(s)\rangle^{\cap} \tau\right)$ for all $\tau \in \operatorname{Str}$.

Lemma. For any j there is a stage $s(j)$ such that for all $s \geqslant s(j)$ and all $j^{\prime} \leqslant 2 j$: $K_{j^{\prime}}^{s}=K_{j^{\prime}}^{s(j)}$, and no requirement $B^{\prime} \neq\left\{j^{\prime}\right\}^{B \oplus g}$ for $j^{\prime}<j$ is attacked at stage s.

Proof of this lemma is routine. Let $K_{j}=K_{j}^{s(j)}, g=\bigcup_{j} \hat{K}_{j}$. Note that $g=\lim _{s} \rho_{s}$. If $s+1$ is the last stage at which $B^{\prime} \neq\{j\}^{B \oplus g}$ is attacked, for no later s^{\prime} is j bad at ($s^{\prime}, 0$); so the requirement is met. As before, $\left\langle T_{s}\right\rangle_{s \in \omega}$ is recursive uniformly in B^{\prime}, and B^{\prime} can compute A, with δ_{s+1} and δ_{s+1} replacing the $\delta_{2 j+1}$ and $\delta_{2 j+2}^{\prime}$ of our previous attempt. The entire construction is recursive in f, since construction of T_{s+1} from T_{s+1}^{-}requires only an oracle for 0^{\prime}, which f provides, so $B^{\prime} \leqslant_{T} f$. Q.E.D.

In general, for what sorts of upper bounds \underline{a} on I are there \underline{b} so that for all $\underline{c} \in I$, $\underline{b} \vee \underline{c}<\underline{b}^{\prime}=\underline{a}$? More pressing, however, is the problem: is every u.u.b. on I (or, for that matter, on the ideal of arithmetic degrees) the jump of an u.b. on I ?

References

1. H. Hodes, More on uniform upper bounds, J. Symbolic Logic (to appear).
2. H. Rogers, The theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
3. L. Sasso, A minimal degree not realizing least possible jump, J. Symbolic Logic 39 (1974).

Department of Philosophy, Cornell University, Ithaca, New York 14853
Current address: Department of Philosophy, Tufts University, Medford, Massachusetts 02155

[^0]: Received by the editors August 21, 1981.
 1980 Mathematics Subject Classification. Primary 03D30, 03D55.
 Key words and phrases. Turing, degree, jump, ideal, uniform upper bound, tree.

