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JUMPING TO A UNIFORM UPPER BOUND

HAROLD HODES

Abstract. A uniform upper bound on a class of Turing degrees is the Turing degree

of a function which parametrizes the collection of all functions whose degree is in

the given class. I prove that if a is a uniform upper bound on an ideal of degrees

then a is the jump of a degree ç with this additional property: there is a uniform

bound fc < g so that b V c < a.

Fix a recursive pairing function (x, y) i-» (x, y) from w X w onto us. For/ G "co,

let(/)x(jO =/«x, y))\ for ÇF Qatà,f parametrizes 9 iff f= {(f)x\x E to}. Let <r

and =t be Turing reducibility and Turing equivalence on "a; a degree is an

equivalence class under =t- Where 7 is a set of degrees, a degree a is a uniform

upper bound (u.u.b.) on I iff some / G a parametrizes U /. 7 is an ideal iff I is

downward closed and closed under join; 7 is a jump ideal iff it is also closed under

jump. Let / be a countable jump ideal and a be an upper bound on /. What can we

say about degrees which jump to a? Since q' G 7, Friedberg's theorem [2, p. 265]

provides such a b; but b is peculiar in that V = q' V b. Since o(2) G 7, we can

relativize to q' and obtain b 3= q'; but now V — q(T) V b. We would like to have

ç V b < b' = a for all c G I. In this note we show that if a is a u.u.b. on I, we can do

this and more.

Theorem. If a is a u.u.b. on I there are b and c,ca u.u.b. on I and c V b< b' = a.

We prove this by using the trick of [3] within a construction like that used in [1,

Theorem 3]. Fix / G a, A G a, f parametrizing U / and A G"2. Where AT is a

sequence <n0,...,«,_,),- K = <(/)„„,...,(/)„,_,>. If « = (g0,- ■ -,g/-i> is a se-

quence of functions in "<o, û is the partial function given by m((î, x» = g,(x) for

í </; mv is the total extension of û such that wv((/, x)) = 0 for / > 0. We force

with the language of arithmetic supplemented by the uninterpreted function symbol

'g' and predicate '£'. A condition is a pair (K, T), where K G u<u and Tis a total

recursive perfect tree represented by its Gödel number. (K, T) lh g(x) = y iff

(x)0 < lh(A-) and (/)(x)o((x),) = v; ^ 7) lh 5(x) iff x < Ihr« » and T(( j)(x)

= 1. A sequence Ô is compatible with À' iff K U 8 is a function (viewing 8 as a
ft

function on lh(5)); K floods 5 iff 8 C K. Note that if 8 is compatible with K, some

extension of K floods ô. Recall Sasso's starred subtrees: T*{8) = T(S*) where

5* = ((4)0,0,(4),.(i)W).„0) for« G Str.
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Here is how we would like our construction to proceed. K0 = ( ), T0 = id f Str.

Suppose we have (K2J, T2J). Stage 2j + I: Fix z = z(T2J), depending uniformly on

(the Gödel number of) T2j such that for all B G [T2j], {z}B(z)liff B & [Tfjl

Case 1. There are 8 G Str and p a finite sequence compatible with K2j so that

{s}WWifi>p\z) = o. Let (82j,P) be the least such. Let K2j+X be the least

extension of K2j flooding p. Let T2j+ ,(t) = r2/i^ <1, l>n t).

Case 2. Otherwise. Let JST2,+, = K2j and 7^+, = 1%,¡

Stage 2j + 2. K2j+2 = K2J+ln (j). Case 1. There is a 5 G Str so that

U)T2J+A*\j)l- Let 52>+2 be the least such 8. Case 2. Otherwise; let 82j+2 = ( >. Let

r2/+2(T) = T2JV{82j+2n (A{j))n r) for all t G Str.

Let g= U,^,; 5= H ,[7;]. Clearly g parametrizes U 7. We selected T2J+l to

meet the requirement B' ^ (7}Bffig. For if Case 1 obtained at stage 2j +l,fi? [7^];

so {z}B{z)l, so B'{z) = 1; but we have chosen K2j+l to make sure that {j}B<Bg(z)

= 0. If Case 2 obtained, B G [7^]; so (z}B(z) î ; so B'{z) = 0; but either

{j}B9g(z) î or it converges to something different from 0. To compute A from B'

we must recover (Ts)sea recursively in B', as a sequence of Godel numbers. Suppose

we have T2j. We have arranged to have B signal to B' the choice of case and the

value of 82J+l in Case 1. For B' can tell whether B G [Tfj]. If not, we find the

longest 8 such that T2J{8*) is an initial segment of B; this is 82J+l; we can now

obtain T2J+l. If B G [7^], we know that T2J+X = T2j. An oracle for B and 0', which

B' provides, suffices for carrying out even steps, that is, obtaining 82j+2; from this

we get A(j) = i iff T2j+x{82J+2n (/)) is compatible with B; so we recover A(j), and

thus get T2j+2. Furthermore B' is recursive in the entire construction. The only hitch

is that the construction just described is not recursive in /. For at stage 2j + 1 we

needed to answer a 2° question about K2J.

Fortunately, since / is a parametrization of U 7 (and not just U 7 n"2), we can

guess at an m such that (f)m = (K2j )', so that from a certain point on our guesses

settle and are right. So we modify the previous construction using the guessing

technique of [1]. Working on requirement B' ¥= {j}B9g, we may guess that we are in

Case 2, when actually we are in Case 1; so we may end up with B'{z) = 1 and,

contrary to our intentions, {j}B<Sg(z) = 1, where z = z(T) and T is the tree which

we thought would meet the requirement. But then we shall just go back and attack

that requirement again. At the end of stage s we shall have Kq,. . .,Ksd(s), our guesses

at K0,...,Kd{s), a tree 7^ (no guessing here!), a sequence ps: s -» u which is the

portion of g to which we are definitely committed, and a number h(s) which tells us

how far we have searched for witnesses to being in Case 1 on odd conditions. For

27 + 1 < d{s), K2J+i was instituted by an attack on the requirement B' = {j}B@g;

the stage at which this attack occurred was t{j, s) *£ s. Let c(7, T, K,r,q) = 1 iff

our ^th guess at ( K v )' says that there are 8 G Str and p compatible with K and with

t such that {j}T<s">m^u"\z(T)) - 0. c(j, T, K, r,q) = 2 otherwise. (Here t is a

finite sequence of numbers.)

Let tf0° = < >, p0 = 0, h{0) = 0, d{0) = 0,T0 = id Str. We describe stage s + I.

Suppose we have KQ,...,Kd(s), ps, h{s), Ts, d(s) = 2y0. 2j + 1 < d{s) is bad at
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(is r) iff c{j, Tt(js)_x, Ks2j, p,0>j)_„ h{t{j, s))) = 2 and c(j, Tt(Js)_x, Ks2j, p,u,s)-X,

A(s) + r+l)=l. In other words, when we instituted K2j at stage t(j,s) we

thought we were in Case 2, but our h{s) + r + 1st guess at (K'¿¡ )' says that we

were in Case 1. Search for the least r such that for some/ </0:

all 2y' + 1 < 2y + 1 are nonbad at (s, r);

if/ <j0, 2y + 1 is bad at (s, r);

if no 2y + 1 < d{s) is bad at (s, r),j =j0;

if c(j, Ts, K2J, ps, h(s) + r + 1)= 1, then for some 8 and p which witness this

fact, (8, p)<h{s) + r.

There is such an r, and the least one determines a unique such7. Let h(s + 1) = h(s)

+ r + 1, d(s + 1) = 2; + 2, Ä7+1 = K* for all i < 2j. We now attack B' * {j}B9g.

Case I. c(j, Ts, Ks2*x, ps, h(s + I)) = 1. Fix the least (8, p> so that 5 and p

witness this fact. Let K2+lx be the least extension of K2^x flooding p and ps; let

*i;+2 = *;;+.n <7>- Let Tf4^i) - 'm:+tn<^ l>n t) for all t G Str, where 8 =

Ss+\-
Case 2. c(j, Ts, ££+!, p„ A(s + 1)) = 2. Let «+>, = K%x, K$x2 = £#,n<j[>;

let T~+x = 77. In either case, let pJ+, be the least extension of ps compatible with

Ks2+l2. If there is a 8' G Str such that {5}Ts'+l<Ä)(j)i., let 8's+x be the least such;

otherwise 8's+x = < >. 7j+1(t) = 7;-+1(«;+,n (A(s))nr) for all r G Str.

Lemma. For any j there is a stage s(j) such that for all s > s(j) and all j' < 2j:

Ksr = Kfj), and no requirement B' ¥= {j'}B<Bgfor j' <j is attacked at stage s.

Proof of this lemma is routine. Let Kj = KpJ), g = U .A^. Note that g = hmJpJ.

If s + 1 is the last stage at which B' ¥= {j}BBg is attacked, for no later s' isj bad at

(j',0); so the requirement is met. As before, (Ts)seu is recursive uniformly in B',

and B' can compute A, with 8S+X and ÔJ+1 replacing the 82J+X and 82J+2 of our

previous attempt. The entire construction is recursive in/, since construction of Ts+,

from Ts'+, requires only an oracle for 0', which /provides, so B' <Tf-   Q.E.D.

In general, for what sorts of upper bounds a on 7 are there b so that for all c G I,

b V c < b' = ai More pressing, however, is the problem: is every u.u.b. on 7 (or, for

that matter, on the ideal of arithmetic degrees) the jump of an u.b. on 7?
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