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A NOTE ON THE IRREDUCIBILITY OF

LEBESGUE MEASURE WITH

APPLICATIONS TO RANDOM WALKS ON THE UNIT CIRCLE

TZUU-SHUH CHIANG

Abstract. Let n be a probability measure on R. We say that a a-finite measure \ is

irreducible with respect to a if there does not exist a Borel set A with a(A).

u(Ac) > 0 such that fAn(A' — x) \(dx) = 0. It is well known that the Lebesgue

measure m(dx) is irreducible with respect to any discrete measure whose support is

R. We prove that every absolutely continuous measure is irreducible with respect to

any probability measure whose support is R and give an application of this fact to

random walks on the unit circle.

A well-known property of Lebesgue measure on the real line R is the following:

Let A be a Borel set of positive Lebesgue measure and {A,}^, a countable dense

subset of R. Then m((U°°=x(A — X¡))c) = 0. (Here, m denotes the Lebesgue mea-

sure). In other words, if we try to cover the real line by translating a set of positive

Lebesgue measure through a countable dense set, then we will miss at most a set of

Lebesgue measure 0. We can see this fact from a different point of view. Let ju be a

Borel probability measure concentrated on the countable dense set {a,}^, and a

Borel set with m(A) > 0. Then

(l) ¡x(A — x) > 0   a.e.x-m(dx).

(Throughout this paper "a.e. x-m(dx)" will mean almost every x with respect to the

measure m.) To see this, let x be a point such that p(A — x) = 0. Then a,£ A — x

for  every  i =1,2.i.e.,  x & A — A,   for  every  ¿=1,2,_   Therefore,   r?

UJL.M - a,). Since m((UJl,(i4 - X,))c) = 0, wehavep(yl - x) > 0 a.e. x-m(dx).

We say that a a-finite measure X is irreducible with respect to p if there does not

exist a set A with X(A), X(AC) > 0 such that fAp(Ac - x)X(dx) = 0. Then (1)

implies that any absolutely continuous measure is irreducible with respect to u if p. is

discrete and has support R. It seems obvious that (1) should hold for any probability

measure p whose support is R, not only for those discrete ones. But if one tries to

prove this seemingly obvious fact using the same technique as we used when /x is

discrete, the problem which will be encountered is that there is no such a fixed

countable dense set {aJ°L, to use as when p is discrete. In Theorem 1 we give a

proof of this fact making essential use of Fubini's theorem. As an application of this,

we show in Theorem 3 that a random walk on the unit circle with normalized
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Lebesgue measure as the initial distribution is ergodic if and only if the transition

function does not have a lattice distribution.

Theorem 1. Let p be a Borel probability measure on R with the property that

p(E) > 0 for every open set E C R. Then every absolutely continuous measure is

irreducible with respect to p.

Proof. It is easy to see that p{A — x) is a measurable function in x for every

Borel set A. Therefore if we let B = (x: p(A — x) = 0}, then B is measurable.

Consider,

0 = fji(A - x) m(dx) = ffxB(x)XA-x(y) V(dy) m(dx)

= lfxB(^)XA-y(x)m(dx)p(dy),

so fXB(x)XA-y(x)m{dx) = 0 for a.e. y-p(dy). That is, /XBn(A-y)(x)m(dx) = 0

for a.e. y-p(dy), i.e.,

(2) m(5n(^-y))=fl    a.e.y-p(dy).

Since the support of u = R, we can choose at least a countable dense set {y¡}fL x such

that (2) holds. Thus m{B n (U°L,(v4 -y¡))) = 0. But m{(VJ%x(A -y¡))c) = 0, so

m(B) — 0. Now, let X be an absolutely continuous measure and A a Borel set with

X{A), X(AC) > 0. Then p(A - x) > 0 a.e. x-m(dx) in Ac. So p(A - x) > 0 a.e.

x-X(dx) in Ac. This implies fA.p(A — x) X(dx) > 0.

Remark. Theorem 1 can easily be generalized to the unit circle.

Let X0, A",,... be a Markov process on the unit circle S with initial distribution

jLL-m(dx) and transition functionp(x, dy). We say that X0, Xx,... is a random walk

if p(x, dy) = p(dy — x). We say thatp(x, dy) has a lattice distribution if there exist

x,,...,x„ such that eachx, is a rational multiple of 2m andp(0, (x¿}"=1) = 1. For an

arbitrary random walk, let p = 2^=,p"(0, dy)/2" wherep"(x, dy) is the wth transi-

tion function. The following lemma is easy and the proof will be omitted.

Lemma 2. Let p(x, dy) = p(dy — x) be a transition function and p be defined as

above. Then the support of p is S if and only if p(x, dy) does not have a lattice

distribution.

A theorem regarding the ergodicity of random walks reads as follows: a random

walk on the unit circle with initial distribution ¿'"(¿x) is ergodic if and only if

there does not exist a set A with m(A), m(Ac) > 0 such that fAp(x, Ac)m(dx) —

fA, p(x, A)m{dx) = 0 (cf. [l,p. 143]). We are now ready to state

Theorem 3. A random walk on the unit circle with initial distribution j^m(dx) and

transition function p(x, dy) is ergodic if and only if p(x, dy) does not have a lattice

distribution.

Proof. Suppose p(x, dy) does not have a lattice distribution. If the random walk

were not ergodic, then there exists a set A with m(A), m{Ac)> 0 such that
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fAp(Ac — x)m(dx) = 0.   This  imphes  that   ¡Ap"{Ac — x)m{dx) = 0   for  n —

1,2,_Therefore,

f  2  ±-np"(A<-x)m(dx) = 0,
'A    — i   *

" n= 1

i.e., fAp(Ac — x)m{dx) = 0. But by Theorem 1 and Lemma 2,

f p(Ac - x) m(dx) >0,
JA

so the random walk is ergodic. The converse is trivial and we omit the proof.
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