SOLUTION OF THE γ-SPACE PROBLEM

RALPH FOX

ABSTRACT. This paper disproves the classic conjecture that every γ -space is quasi-metrizable.

A quasi-metric on a set X is a generalized metric $d: X \times X \to [0, \infty)$ satisfying the axioms $d(x, y) = 0 \Leftrightarrow x = y$ and $d(x, z) \leq d(x, y) + d(y, z)$, but not necessarily the axiom of symmetry [N, W]. As with a metric, the family of all sets $B_d(x, r) = \{y: d(x, y) < r\}$, for r > 0, form a neighbourhood base at each $x \in X$ for a topology on X. A space X with such a topology is called quasi-metrizable.

Following [J1], a (an open) neighbournet V on a space X is a binary relation on X such that, for each $x \in X$, the set V[x] is a (an open) neighbourhood of x. A neighbournet V is called a normal neighbournet if there exists a sequence $\langle V_k : k \in \mathbb{N} \rangle$ of neighbournets with $V_{k+1}^2 \subseteq V_k$ for each $k \in \mathbb{N}$ and with $V_1 \subseteq V$. Clearly, if X is a quasi-metrizable space with quasi-metric d, and if for some $n \in \mathbb{N}$ and each $x \in X$ we have $B_d(x, 1/n) \subseteq V[x]$, then V is a normal neighbournet; for we may define the V_k by $V_k[x] = B_d(x, 2^{-k}/n)$.

With the above terminology, a T_1 space X is called a γ -space if there exists a decreasing sequence $\langle V_k : k \in \mathbb{N} \rangle$ of neighbournets (called a γ -sequence) such that, for each $x \in X$, the family $\{V_k^2[x]: k \in \mathbb{N}\}$ is a neighbourhood base at x [LF, J1]. Clearly every quasi-metrizable space is a γ -space since we may define the V_k by $V_k[x] = B_d(x, 2^{-k})$.

The question as to whether every γ -space is quasi-metrizable has been raised frequently (and often independently) in the literature, for example [NČ, S, LN, LF, G, J2], and is listed as Classic Problem VIII in [TP]. Indeed, a proof of this question was first claimed in the literature in 1943 [R1, p. 35]; however the argument given was incomplete and the author had later to strengthen his required conditions [R2]. Currently several partial solutions have been obtained [G-K2; J2; B-K1; F2].

In this paper we construct a Hausdorff counterexample to the γ -space conjecture (currently we know of no regular counterexample). If U^n is a normal neighbournet whenever U is a neighbournet on X, then the space X is said to be n-pretransitive [FL]. Our starting point will be the existence for each $n \in \mathbb{N}$, as proven in [F1], of a Hausdorff quasi-metrizable space X_n which is not n-pretransitive (such a space is the (n+1)th power M^{n+1} of the Michael line M). Let U_n be an open neighbournet on

Received by the editors July 23, 1981 and, in revised form, September 15, 1981. 1980 Mathematics Subject Classification. Primary 54E15; Secondary 54G20, 54E99. Key words and phrases. Quasi-metric, γ-space, normal neighbournet, n-pretransitive space.

 X_n such that U_n^n is not a normal neighbournet. If we let $X = \bigcup_{n=1}^{\infty} X_n$ be the disjoint topological sum, and define the open neighbournet U on X by $U = \bigcup_{n=1}^{\infty} U_n$, then for no $k \in \mathbb{N}$ is U^k a normal neighbournet. On the other hand each X_n , and hence X, are quasi-metrizable spaces and thus γ -spaces. From the space X and open neighbournet U we construct the non-quasi-metrizable γ -space X as follows.

The points of \tilde{X} are the points of $X \cup X^2 \cup X^3 \cup \cdots \cup X^{\omega}$. The basic open sets of \tilde{X} are all sets in X^n of the form $\{\langle x_1, \ldots, x_{n-1} \rangle\} \times A$ where A is open in X, for each $n \in \mathbb{N}$, together with all sets

$$\tilde{U}_{x;k} = \{x\} \cup \bigcup_{n=k}^{\infty} \left(\left\{ \left\langle x_1, \dots, x_{n-1} \right\rangle \right\} \times U^{n-k+1}[x_n] \right)$$

where $k \in \mathbb{N}$ and $x = \langle x_1, x_2, \dots \rangle \in X^{\omega}$.

To show that \tilde{X} is a γ -space, let $\langle V_k \colon k \in \mathbb{N} \rangle$ be a γ -sequence for X with $V_1 \subseteq U$ (for example, let $\langle W_k \colon k \in \mathbb{N} \rangle$ be any γ -sequence for X and take $V_k = W_k \cap U$). Define neighbournets \tilde{V}_k on \tilde{X} as follows: If $x = \langle x_1, \dots, x_n \rangle \in X^n$ then $\tilde{V}_k[x] = \{\langle x_1, \dots, x_{n-1} \rangle\} \times V_k[x_n]$, while if $x \in X^\omega$ then $\tilde{V}_k[x] = \tilde{U}_{x;k}$. Then $\langle \tilde{V}_k \colon k \in \mathbb{N} \rangle$ is a γ -sequence for \tilde{X} . For if $x = \langle x_1, \dots, x_n \rangle \in X^n$ then clearly the sets $(\tilde{V}_k)^2[x] = \{\langle x_1, \dots, x_{n-1} \rangle\} \times V_k^2[x_n]$, for $k \in \mathbb{N}$, form a neighbourhood base at x. Alternatively, if $x = \langle x_1, x_2, \dots \rangle \in X^\omega$ then the sets

$$(\tilde{V}_k)^2[x] = \{x\} \cup \bigcup_{n=k}^{\infty} (\{\langle x_1, \dots, x_{n-1} \rangle\} \times V_k \circ U^{n-k+1}[x_n])$$

$$\subseteq \{x\} \cup \bigcup_{n=k}^{\infty} (\{\langle x_1, \dots, x_{n-1} \rangle\} \times U^{n-k+2}[x_n]) \subseteq \tilde{V}_{k-1}[x],$$

for $k \in \mathbb{N}$, form a neighbourhood base at x.

To show that \tilde{X} is not quasi-metrizable, suppose d is a quasi-metric for \tilde{X} and define $x_n, z_n \in X$ by induction on $n \in \mathbb{N}$ as follows.

Assume inductively that x_1, \ldots, x_{n-1} have been defined. Since $\{\langle x_1, \ldots, x_{n-1} \rangle\} \times X \subseteq X^n \subseteq \tilde{X}$ is canonically homeomorphic to X, we may choose $x_n, z_n \in X$ such that $d(\langle x_1, \ldots, x_{n-1}, x_n \rangle, \langle x_1, \ldots, x_{n-1}, z_n \rangle) < 1/n$ but $z_n \notin U^n[x_n]$; for otherwise U^n would be a normal neighbournet.

Having completed the induction, let $x = \langle x_1, x_2, \ldots \rangle \in X^{\omega}$. Find $m \in \mathbb{N}$ such that $B_d(x, 2/m) \subseteq \tilde{U}_{x;1}$. Choose $n \ge m$ such that $d(x, \langle x_1, \ldots, x_n \rangle) < 1/m$; then $d(\langle x_1, \ldots, x_n \rangle, \langle x_1, \ldots, x_{n-1}, z_n \rangle) < 1/n \le 1/m$ but $d(x, \langle x_1, \ldots, x_{n-1}, z_n \rangle) \ge 2/m$ since $\langle x_1, \ldots, x_{n-1}, z_n \rangle \notin \tilde{U}_{x;1}$. Thus d does not satisfy the triangle inequality. This proves that the space \tilde{X} is not quasi-metrizable.

REFERENCES

- [B] H. R. Bennett, Quasi-metrizability and the γ -space property in certain generalized ordered spaces, Topology Proc. 4 (1979), 1–12.
 - [FL] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Dekker, New York, 1982.
- [F1] R. Fox, Pretransitivity and products of suborderable spaces, Topology and Order Structures, Part I, MC Tract 142, Math Centrum, Amsterdam, 1981.
 - [F2] _____, On metrizability and quasi-metrizability (to appear).
 - [G] G. Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977), 360-366.
 - [J1] H. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108.

608 RALPH FOX

- [J2] _____, Covering properties and quasi-uniformities of topological spaces, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., Blacksburg, 1978.
- [K1] J. Kofner, Transitivity and the γ -space conjecture in ordered spaces, Proc. Amer. Math. Soc. 81 (1981), 629-635.
 - [K2] _____, Transitivity and orthobases, Canad. J. Math. (to appear).
- [LF] W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240.
- [LN] W. F. Lindgren and P. Nyikos, Spaces with bases satisfying certain order and intersection properties, Pacific J. Math. 66 (1976), 455-476.
- [NČ]. S. Nedev and M. Čoban, On the theory of o-metrizable spaces. III, Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 (1972), no. 3, 10-15.
 - [N] V. V. Niemytzki, On the third axiom of metric space, Trans. Amer. Math. Soc. 29 (1927), 507-513.
 - [R1] H. Ribeiro, Sur les espaces à métrique faible, Portugal. Math. 4 (1943), 21-40.
 - [R2] _____, Corrections à la note "Sur les espaces à métrique faible", Portugal. Math. 4 (1943), 65-68.
- [S] R. Sabella, Convergence properties of neighboring sequences, Proc. Amer. Math. Soc. 38 (1973), 405-409.
 - [TP] Topology Proc. 2 (1977), 687-688.
 - [W] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE, CARBONDALE, ILLINOIS 62901