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SOLUTION OF THE y-SPACE PROBLEM

RALPH FOX

Abstract. This paper disproves the classic conjecture that every y-space is quasi-

metrizable.

A quasi-metric on a set X is a generalized metric d: X X X -> [ 0, oo) satisfying the

axioms d(x, y) = 0 « x = v and d(x, z) *£ d(x, y) + d(y, z), but not necessarily

the axiom of symmetry [N, W]. As with a metric, the family of all sets

Bd{x, r) — [y: d(x, y) < r), for r > 0, form a neighbourhood base at each x G A'

for a topology on X. A space X with such a topology is called quasi-metrizable.

Following [Jl], a (an open) neighbournet V on a space X is a binary relation on X

such that, for each x & X, the set F[x] is a (an open) neighbourhood of x. A

neighbournet V is called a normal neighbournet if there exists a sequence (K^:

k G N) of neighbournets with F^2+, Ç J^ for each k G N and with K, ç: K Clearly,

if X is a quasi-metrizable space with quasi-metric d, and if for some n G N and each

x G A1 we have Bd(x,l/n) C V[x], then F is a normal neighbournet; for we may

define the Vk by Vk[x] = 5¿(x, 2"*/«).

With the above terminology, a r, space X is called a y-space if there exists a

decreasing sequence (Vk: k G N) of neighbournets (called a y-sequence) such that,

for each x G X, the family (F^[x]: k G N} is a neighbourhood base at x [LF, Jl].

Clearly every quasi-metrizable space is a y-space since we may define the Vk by

Vk[x] = Bd(x,2-k).

The question as to whether every y-space is quasi-metrizable has been raised

frequently (and often independently) in the literature, for example [NC, S, LN, LF,

G, J2], and is listed as Classic Problem VIII in [TP]. Indeed, a proof of this question

was first claimed in the literature in 1943 [Rl, p. 35]; however the argument given

was incomplete and the author had later to strengthen his required conditions [R2].

Currently several partial solutions have been obtained [G-K2; J2; B-Kl; F2].

In this paper we construct a Hausdorff counterexample to the y-space conjecture

(currently we know of no regular counterexample). If U" is a normal neighbournet

whenever U is a neighbournet on X, then the space X is said to be n-pretransitive

[FL]. Our starting point will be the existence for each n G N, as proven in [Fl], of a

Hausdorff quasi-metrizable space Xn which is not n-pretransitive (such a space is the

(n + l)th power M"+i of the Michael line M). Let U„ be an open neighbournet on
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Xn such that f7„" is not a normal neighbournet. If we let X = U"=, Xn be the disjoint

topological sum, and define the open neighbournet U on X by U — U"=1 U„, then

for no k G N is Uk a normal neighbournet. On the other hand each Xn, and hence

A', are quasi-metrizable spaces and thus y-spaces. From the space X and open

neighbournet U we construct the non-quasi-metrizable y-space X as follows.

The points of X are the points of X U A2 U A'3 U ■ • • UI". The basic open sets

of X are all sets in X" of the form {(x,,... ,x„_,)} X A where A is open in X, for

each n G N, together with all sets

00

ÙX;k={x} U  U ({<*„...,x„_,)} X i/"-*+1[xJ)
n = k

where A: G N and x = (x,, x2,...)G Xa.

To show that X is a y-space, let (Vk: k G N) be a y-sequence for X with Vx Q U

(for example, let (Jf^: A: G N) be any y-sequence for X and take Vk= Wk D Í7).

Define neighbournets Kt on Z as follows: If x = (x,,... ,x„) G X" then KJx] =

{(x„...,x„_,>} X FJxJ,whileifxG A"" then Vk[x]= Üx .k. Then (Vk: k G N> is

a y-sequence for X For if x = (x,,... ,x„) G X" then clearly the sets (Vk)2[x] =

(<x,,...,x„_i)} X Vk[x„], for k G N, form a neighbourhood base at x. Alterna-

tively, if x = (x,, x2,...) G Xa then the sets

00

(ñ) M = W U  U ({<x„...,x„_,>} X KAo £/-*+'[,„])

oo

Ç {x} U  U ({(x„...,x„_,)} X U-*+*[xm)) C Vk_x[x],
n = k

for A: G N, form a neighbourhood base at x.

To show that X is not quasi-metrizable, suppose d is a quasi-metric for Z and

define x„, zn G A'by induction on « G N as follows.

Assume inductively that x,,... ,x„_, have been defined. Since {(x,,... ,x„_,)} X

X Q X" C X is canonically homeomorphic to X, we may choose xn, zn £. X such

that d«x,,...,x„_1,x„>, (x,,...,x„_,, z„» < l/n but z„ £ i/"[x„]; for otherwise

Í7" would be a normal neighbournet.

Having completed the induction, let x = (x,, x2,.. .)G X". Find m G N such

that Bd(x,2/m) C Üx.x. Choose n > m such that d{x, (x,,...,xn>) < 1/m; then

d«x„...,x„>, (x„... ,xn_j, z„» < 1/« < l/m but rf(x, <x„... ,x„_„ z„» > 2/w

since (x,,... ,x„_,, zn) £ L^.,. Thus ¿/ does not satisfy the triangle inequality. This

proves that the space X is not quasi-metrizable.
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