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PERFECT IMAGES OFp-SPACES

JÓZEF CHABER

Abstract. We give a new proof of the fact that paracompact ^-spaces are preserved

by perfect mappings. This proof gives more information about the image space than

the preceding proofs. We construct some examples showing that the information we

get is complete in a way, and an example showing that a perfect image of a

a-paralindelöf and screenable p-space need not be a p-space.

We shall use the terminology and notation from [E]. All mappings are assumed to

be continuous and onto and all spaces are at least regular.

We shall consider the following property of a sequence {Dn)n>x of subsets of a

space X.

(p) If nn5s, D„ =£ 0, then D {A: A G &} ^ 0 for any centered collection & of

subsets of A'containing {Dn: n> 1}.

A space X is said to be a p-space [A] if X has a sequence {%„}„;,, of open covers

such that each sequence {U„}n>, with U„ G %.„, for n > 1, has the property (p) [P].

If X is, in addition, a paracompact space, then X has a perfect mapping onto a

metric space such that each fiber of this mapping is contained in r\n>xUn for a

certain sequence {U„}„>x with U„ G %n for n > 1.

1. Perfect images of paracompact p-spaces. We shall consider the following

situation: g: X -» S is a perfect mapping of A" onto a metric space 5 and /: X -» y is

a perfect mapping of X onto Y. It is known [F, I] that there exists a perfect mapping

h: Y -* T of Y onto a metric space T.

From the results of [Chi, Ch2] it follows that, if Y is a perfect space, then one can

find such an h satisfying, for y G Y,

h~xh(y) C {/: gT\y') = gT\y)} G Pi {/(*"'*(*)): x G/-V»}-

In particular, each fiber of h is contained in the image of a fiber of g and

consequently, the fibers of h are metrizable (countable or finite) if the fibers of g are

metrizable (countable or finite).

In the second section we shall show that this may not be the case if Y is not a

perfect space. However, we have

Theorem 1.1. Assume that f: X -* Y is a perfect mapping. If X has a perfect

mapping g onto a metric space S, then Y has a perfect mapping h onto a metric space T

such that, for each y G Y, there exists ay' G Y satisfying h~xh( y) C f(g~xg(f~x(y')))-
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Before proving Theorem 1.1, we list some consequence of this result. We assume

that/, g and h are as in the formulation of Theorem 1.1.

Corollary 1.1. Assume that the fibers of f are countable. If the fibers of g are

metrizable, then the fibers of h are metrizable too.

Proof. Each fiber of h is a compact subset of the image of a countable union of

fibers of g and is therefore metrizable [E, 3.1.20].

Corollary 1.2. Assume that the fibers offare countable (finite). If the fibers of g

are countable {finite), then the fibers of h are countable (finite) too.

Corollary 1.3. Assume that f is at most k-to-one. If g is at most n-to-one, then the

fibers of h are of cardinality not greater than k(n — I) + 1.

Proof of Theorem 1.1. For n s* 1 let S„ be a locally finite closed cover of X

obtained by taking inverse images under the mapping g of elements of a locally

finite closed cover of S consisting of sets of the diameter not greater than },. Clearly,

for x E X, the sequence {St(x, £„)}„», satisfies (p) and its intersection is the set

g~~xg(x). Moreover, we can assume that x G E G &n implies x G E' C E for a

certain E' G &„+x.

For n > 1 put % = {f(E): E G &n) and observe that each iFn is a locally finite

closed cover of Y and {Sl(y, %)}„»x satisfies (p) for y G Y (compare with [I, Lemma

2.2]).

Let % = {U„(y): y G Y}, where U„(y) = Y\ U {E G %: y & F}. It is easy to

see that, for each y G Y and n s* 1, Un+X(y) C Un(y) C St{y,%) and y G U„(y')

implies U„(y) C U„(y').

Take U„(y„) G % and assume that y G Hn>x U„(y„). Then y E C\n>x St(>>„, %)

and consequently, y„ ESt(y,%) for n > 1. Since {St(y,Ljn))n>x satisfies (p), it

follows that the sequence {yn}„», has an accumulation pointy' G Y.

We shall show that for each n s* 1 there exists anm>l such that Um(ym) C

St(y', %). This will imply, on one hand, that the sequence {U„(y„)}n>x satisfies (p)

—for {St(>>', %)}n> i satisfies (p)—and, on the other hand, that

n un(yn)c n siy',%)

=/(n st(rv),s„))=/(g-'g(rv))).
n>l

Consequently, we shall obtain that Y is a p-space and, according to the observation

following our definition of p-spaces, Y has a perfect mapping h onto a metric space

T such that each fiber of h is contained in a set f(g~xg(f~x(y'))) for a certain

y' G Y.
Thus, in order to finish the proof, we have to show that for each n > 1, St(y', ■#„)

contains some Um(ym). To this end, take n s* 1 and an m > n such that ym G Un(y').

From the properties of the families {(/„(y): y G Y), we obtain Um(ym) C U„(ym) C

U„(y')CSt(y',%).
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Observe that in the above proof we did not use the fact that paracompact p-spaces

are preserved by perfect mappings.

2. Examples. We shall construct examples illustrating the results of the first

section. Again, X, Y, S and /, g are as in the formulation of Theorem 1.1. The

examples are modifications of the Alexandroff double circle [E, 3.1.26] which is a

compact nonperfect space. The fact that in our constructions X and Y are not

perfect spaces is, in view of [Ch2, Theorem 1.2.A], essential.

The first example shows that the assumption that the fibers of / are countable in

Corollaries 1.1 and 1.2 is essential and that one cannot claim that y' = y in Theorem

1.1.

Example 2.1. Let X — A(C) be the Alexandroff double circle consisting of the

topological circle C0 and the set of isolated points C,. The natural projection g of A"

onto S = C0 is a two-to-one mapping and the mapping / identifying C0 to a point y0

is a perfect mapping of X onto Y which is the Alexandroff compactification of the

discrete space C,. If h maps Y onto a metric space, then the fiber of h containing y0

is a Gyset in Y and consequently, has a countable completion in Y. Thus the fibers

of h are neither countable nor metrizable. If y E h~xh(y0) and y ¥= y0, then

fig~lg(f~X(y))) consists of two points and does not contain the fiber h~xh(y).

We shall need the following auxiliary example:

Example 2.2. For each m> I there exists a compact space Am which has an

(m + 1)-to-one mapping onto a circle and is such that any mapping h of Am onto a

metric space has a fiber containing at least m + 1 points.

The space Am is a natural modification of the Alexandroff double circle A(C)

which is exactly Ax. Namely, Am is the union of m + 1 circles C0 U C, U • • • UCm,

where C0 C Am is a topological circle while C,,... ,Cm consist of isolated points of

Am and are dense in Am.

The topology of Am is such that the natural projection p of Am onto C0 is a

continuous ((m + 1)-to-one) mapping of Am onto the circle C0. Moreover, Am has

the property that any GVset in Am, containing C0, contains p~x(c) for all but a

countable number of c G C0.

Assume that h: Am -> T is a mapping of Am onto a space T with a metric p.

Consider r: Am-> R defined by r(y) = p(h(y), h p(y)). Clearly r is continuous and

r~'(0) is a Gg-set in Am containing C0. Let c G C0 be such that p~x(c) C r~x(0).

From the definition of r, it follows thatp~'(c) C hTxh(c), which shows that h has a

fiber containing at least m + I points.

The next example shows that the cardinality of the fibers of h in Corollary 1.3

cannot be decreased.

Example 2.3. For each k, n s* l there exists a compact space X which has an

n-to-one mapping onto a metric space S and an at most k- to-one mapping /onto the

space Am from Example 2.2, where m — k(n — 1).

The space X is the sum of k copies of An_,. Clearly, X has an n-to-one mapping g

onto the sum of k circles S. On the other hand, the mapping /, identifying the

corresponding points of k circles corresponding to C0 in each copy of A    } in X, is a
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mapping of X onto  Y = Am, where m — k(n — I) and the fibers of / are of

cardinality not greater than k.

Observe that the above construction can be used in order to define Am from Ax.

To obtain Am it is sufficient to put n = 2 and k = m. The next example generalizes

this construction.

Example 2.4. For each compact metric space M, there exists a compact space X

which has a two-to-one mapping g onto the metric space M X C and can be mapped

by a mapping/, with nontrivial fibers homeomorphic to M, onto a space AM such

that any mapping of AM onto a metric space has a fiber containing M (in fact, it has

a fiber containing the sum of M and an isolated point).

Let X — M X Ax. Clearly g = id X p, where p is the projection of Ax onto the

circle C0, is a two-to-one mapping of X onto ÜÍXC0. On the other hand, the

mapping / which is the projection of M X C0 C X onto C0 and the identity on

M X C,, maps A" onto a space which we denote, according to the notation of

Example 2.2, by AM. The proof of the fact that any mapping of AM onto a metric

space has a fiber containing M (plus an isolated point) is the same as in Example 2.2.

If M is the convergent sequence, then we obtain an example illustrating the part of

Corollary 1.2 concerning finite-to-one mappings.

Example 2.5. There exists a compact space X which has a two-to-one mapping

onto a metric space and can be mapped by a countable-to-one mapping / onto a

space Y such that any mapping of Y onto a metric space has an infinite fiber.

The above constructions can be generalized still further:

If e: P -» M is a perfect mapping of a paracompact p-space P onto a metric space

M, then one can define a paracompact p-space Ae, by identifying in P X Ax each set

of the form e~x(m) X {c}, where m E M and c G C0, to a point. Thus the quotient

space Ae — (M X C0) U (P X C,) has a natural projection onto M X C0 which is

perfect and has the fibers corresponding to the fibers of e. Moreover, any mapping

of Ae onto a metric space has to have fibers corresponding to the fibers of e.

If e0: P -> M and f0: M -> M' are perfect mappings and M, M' are metric spaces,

then X — Ae¡¡ has a perfect mapping / generated by /0 onto Y = Ae, where e = f0e0.

If A is a mapping of Y onto a metric space, then for each m E M', there exists a

c G C0 such that y = (m, c) E M' X C0 C Y satisfies A_1A(.y) ̂> f{g~xgir\y))\

where g is the natural projection of X onto M X C0.

Observe that for M — (1,... ,k}, P — M X {1,...,« — 1}, e0 being the projection

of P onto M and /0 identifying Af to a point, the above construction becomes our

Example 2.3.

3. Perfect images of p-spaces. It is known that perfect images of p-spaces

satisfying certain covering properties such as metacompactness, subparacompactness

or, more generally, submetacompactness (= 0-refinability) are p-spaces (see [B,

Table 1]). We shall use an example from [DGN, D] and a method from [W] in order

to construct an example of a perfect mapping / of a p-space X with a o-locally

countable and o-disjoint base onto a space Y which is not a p-space. This shows that

the covering properties Usted above cannot be replaced by the property of being

metalindelöf nor even screenable and a-paralindelöf space [FR].
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First we need the example from [DGN, Example 3.3 and D].

Example 3.1. There exists a Cech complete space Z with a a-locally countable and

o-disjoint base containing a discrete closed subset F which is not a Gs-set in Z.

Example 3.2. There exists a perfect mapping / of a p-space X with a a-locally

countable and a-disjoint base onto a space Y which is not a p-space.

Let Z be the space from Example 3.1 and M = {0} U {£: n s» 1} the convergent

sequence. Put X~ Z X M\{{Z\F) X (0}). Clearly, X has a a-locally countable

and a-disjoint base. To see that Aris a p-space, assume that {Glik}k>x is a decreasing

sequence of open covers of Z such that Uk E Glik for k > 1 implies that {Uk}k>x

satisfies (p). Moreover, since F is closed and discrete in Z, we can assume that z E F

and z G r\k> x Uk implies that {Uk}k>, forms a base of neighbourhoods of z in Z.

Define

\={Xn(UX({0}U{^.n>k})):UE%k}

U U {UX (¿}: UE%k).
n>l

Consider a sequence {F*}^, such that Vk E % and suppose that x G C\k>xVk. If

x = {z, j¡), then Vk = t/k X {¿} for Ä: > n. If x = (z,0), then z G F, F4 = X D {Uk

X ({0} U {j¡: n > /c})) and z G H^, I7t, which shows that {Vk}k>x forms a base of

neighbourhoods of x in X Thus, in both cases, {Vk}k>x satisfies (p) and conse-

quently, A' is a p-space.

The quotient mapping/identifying each set of the form (z} X M, where z G F, to

a point is perfect. It remains to show that the quotient space Y is not a p-space.

Assume that {%k)k>\ is a sequence of open covers of Y. For each z E F and

k > 1 find an open in Z set Gk{z) and an element Wk{z) of %k such that

{z}X M CXn {Gk{z) X M) crx(Wk(z)). Since Fis not a Gs-set in Z, it follows

that there exists a z G Z\F and a sequence {zk)k>x of elements of F such that

zE C\k>xGk(zk). Then {z} X {j¡: n> 1} C Dk^xWk(zk), which shows that

{Wk(zk))k>x does not satisfy (p).

A technique for constructing examples such as Example 3.2 is implicit in [W] and

the verification of Example 3.2. The following remark has a similar proof:

Remark 3.3. Suppose Z is a p-space containing a closed discrete subset F where F

is not a C/s-set but every element of F has a countable local base. If X = Z X

M\((Z\F) X {0}) then A" is a p-space and the quotient mapping / obtained by

identifying each set {z} X Af, where z G F, to a point is a perfect mapping onto a

quotient space Y which is not a p-space.

The following problem seems to be natural in view of the above remark:

Problem 3.4. Let /: X -* Y be a perfect mapping of a p-space X onto a perfect

space y. Is Y a p-space?
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