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BAIRE SECTIONS FOR GROUP HOMOMORPHISMS

S. GRAF AND G. MÄGERL

Abstract. The following result is proved: Let X and Y be compact topological

groups and p be a continuous group homomorphism from Y onto X. Then there

exists a map q from A-to y such that/? ° q = id x and q'x(B) is a Baire set in Y for

every Baire subset B of X.

1. Introduction. As pointed out by Rieffel [7], Baire measurable sections for group

homomorphisms can be used to construct certain well-behaved extension groups.

This motivated Kupka [4] to ask the following question: Given a locally compact

group 7, a closed subgroup H of Y and the canonical map p from Y onto the space

Y/H of left cosets of Y, does there exist a Baire measurable map <p: Y/H ~* Y with

p ° <p = idy///? We will show that the answer is "yes" provided Y is compact and H

is a normal subgroup.

2. Preliminaries. Let X and Y be compact Hausdorff spaces, ®0(Ar) and ®0(F)

their respective Baire a-fields. A map /: X -* Y is called Baire measurable iff

f~x(B) E %(X) for all B E %(Y). A map $ from A' to the nonempty subsets of Y

is said to be a correspondence from I to 7 (correspondences are also called

multifunctions or set-valued functions in the literature). By G($) we denote the

graph ((x, y) E XX Y\y E $(x)} of 4>. 4> is called upper semi-continuous (u.s.c.)

iff, for every open subset U of Y, the set (x G X\ $(x) C U) is open in X A

compact-valued correspondence $ is u.s.c. if and only if G($) is closed in A' X Y.

A map /: X ~* Y is called a selection for 0 iff f(x) E 4>(x) for all x G X A

compact Hausdorff space X is said to have the Bockstein separation property (BSP)

iff any two disjoint open subsets of X can be separated by open ^-sets (cf.

Pelczyñski [6, Definition 5.9]). A classical theorem of Bockstein [1] states that an

arbitrary product of compact metrizable spaces has the BSP. The same is true for

compact topological groups (cf. Pelczyñski [6, Theorem 7.5 and Corollary 5.11]).

3. A selection lemma. The following lemma will be used in the proof of our main

theorem but may also be of some interest in itself.

Lemma. Let X be a compact Hausdorff space with the BSP, Z a compact metrizable

space, and 3» an u.s.c. compact-valued correspondence from X to Z. Then <ï> has a

Baire measurable selection.
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Proof. We first note that, due to the fact that X has the BSP, the following holds.

(*) For every subset F of A' the set F is a Baire set

(where A and A denote the closure and the interior of a set A respectively). To show

this let F be a subset of X. BSP implies that there is an open Baire set B such that

F C B and B n (X\F) = 0. This implies F C B C F, hence F = B because B is

open.

We will now show that there is a compact-valued correspondence Í» from X to Z

such that

(i) 4>(x) is a subset of $(x) for all x in X,

(ii) (x G A | 4>(x) n A ¥= 0}isa Baire subset of X for all closed subsets A of Z.

Suppose for the moment that there is such a <ï>. Then the selection theorem of

Kuratowski and Ryll-Nardzewski [5] implies that <I> has a Baire measurable selection.

Since such a selection is also a selection for $ our lemma will follow.

To construct <ï> we define for each x in X a collection ^ of nonempty subsets of Z

by

%.:=   fie Z | 5 open, x G $_,(£)

where $_,(!*) := (x G A'| 4>(x) C 5}. We claim that % has the finite intersection

property. This is a consequence of the following facts:

(1) $_,(F n G) = $_,(F) n $_,((?) for any two subsets F and G of Z,
o

.2- J. -

(2) Í7, n t/2 = Ux n i/2 for any two open subsets Í7, and i/2 of X,

(3) $_,(/?) is open for every open subset B of Z because 4> is u.s.c.

Therefore 4>(x):= C\{B\BE^X} defines a compact-valued correspondence Ô

from A" to Z.

To show that 4> satisfies (i), assume that there are x in X and z in Z such that

z G $(x)\<ï»(x). Because Z is regular there is an open neighborhood U of z with

¿7n$(x) = 0. This implies x G $_,(Z \ ¿7), hence Z \ ¿7 G ÇFX and therefore z G ¿7

n(Z\Ü) C t/n (Z\£/) = U<1(Z\U)= 0 which is absurd.

(ii) is equivalent to

(ii)' <&_X(U) is a Baire set for every open subset U of Z.

So let U C Z be open. Since Z is metrizable there exists an increasing sequence

(B„)„eN of open sets such that U„ Bn = U„ ¿?„ = [/. We show that

*.,(£/) = U ^JK)

holds, from which (ii)' will follow because each of the sets $_,(!?„) is a Baire set

by(*).

For x G í>_,(5„) we have B„ E &x, hence <£(x) C B„ C U, which proves one of

the required inclusions. To prove the other one let 4>(x) be contained in U. This
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implies that B C U holds for some B E %. B being compact there is an n G N with
o o

B C B„. Therefore x G $_X(B) C <P_x(Bn) and the selection lemma is proved.

Remarks. (1) Note that in the situation of the lemma the inverse image {x G X\

$(x) n A ¥= 0} of a closed set A C Z under $ need not be Baire measurable.

Therefore, the theorem of Kuratowski and Ryll-Nardzewski applied to $, in general

only yields a Borel measurable selection for $>.

(2) The lemma, even in a slightly more general form, can also be derived from the

main theorem in [2, Theorem 1, p. 343]. The proof given here uses methods similar

to those employed in proving that general theorem.

4. Main results. In this section we will establish a selection theorem for correspon-

dences whose graphs are groups. The main ingredients of the proof are the selection

lemma and the fact that compact groups have the BSP.

Theorem. Let X and Y be compact topological groups and $ an u.s.c. compact-

valued correspondence from X to Y such that G($) is a subgroup of the product group

XX Y. Then 3> has a Baire measurable selection.

Proof, (a) First we consider the case Y = l\ie, Y¡, where each Y¡ is a compact

metrizable group. For 7 C 7 let 1} = UJeJ Yj and try. Y -* Yj, fy, XX Y ->• X X Ys

be the canonical projections. Let <&, be the correspondence from X to Yj defined by

$j(x) = 7î>($(x)). Then we have

G(<t>j) = #,((?(*)),

hence G($y) is a compact subgroup of IX y, because 4tj is a continuous group

homomorphism. In particular, G($j) has the BSP. Now let T = {(7, <p) \J C 7,

J j= 0, <p: X -» Yj Baire measurable selection of í>y}.

We introduce a partial order < on T by

(7, <p) < (K, xp) iff J c A-and tt, ° tp = ir} ° xp for ally G 7

and claim that T is nonempty and inductively ordered by < . For /' G 7 the

correspondence $, is u.s.c. and takes compact values in the compact metrizable space

Y¡. Hence, by the selection lemma, $, admits a Baire measurable selectioin tp¡, i.e.

({/}, <p() G T. Now let (J\,<P\)\£A be a chain in T. Let 7 = U Jx and define

<p: X - Yj by irj<p(x) = Wj<px(x), if; G 7X.

Then m is a well-defined map. The definition of <p and the Baire measurability of

the <px's implies that for each j EJ the map iTj o <p is Baire measurable. Since the

Baire a-algebra on Yj is the smallest a-algebra rendering all the maps v} measurable,

it follows that œ is Baire measurable. Therefore (J, <p) is an upper bound of

(7A, <Px)\eA i*1 F- By Horn's lemma there exists a maximal element (M, p) in T. To

complete the proof of (a) it remains to show M — I. Assume the contrary. Then

there is a/ G I \ M. Define a correspondence ^ from G(<b) to Yj by

*((x,y))={zEYj\(y,z)E$MU(j)(x)}.

The graph of ^ is equal to G(í>MU(jj), hence compact. This implies that Sr* is u.s.c.

and compact-valued. Since G(<t>M) has the BSP, the selection lemma yields a Baire

measurable selection xp for <ir. Define <p: X -» YMUU) by <p(x) = (p(x), xp(x, p(x))).
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Then <p is obviously a selection for $Mu{j)- To show that q> is Baire measurable we

have to check the measurability of the maps •ni ° <jp with i E M U {j). For /' G M it

follows from ir^ xp — ir¡° p. Moreover, we have ir-qp(x) — xp(x, p(x)) for all x G X.

Since xh>(x, u(x)) is Baire measurable as a map into X X YM taking values in

G(4>w), it is also Baire measurable as a map into G($M) because G(<bM) is compact.

Hence itj o ro is Baire measurable as a composition of Baire measurable maps. Thus

(M U {/}, <p) is an element of T strictly larger than the maximal element (M, p), a

contradiction.

(b) To prove the general case we observe that every compact topological group Y

is a subgroup of a product HY¡ of compact metrizable groups Y¡, because it is a

projective limit of such groups (cf. e.g. Higgins [3, p. 98, Theorem A'"]). Hence by

(a) there exists a selection <p of <t> which is Baire measurable as a map into IT Y¡. As

before we see that it is also Baire measurable as a map into Y. Hence the theorem

follows.

Important examples of correspondences satisfying the assumptions of our theorem

are given by $ = p'x where p is a continuous homomorphism from one compact

group onto another. This immediately leads to the following corollary.

Corollary. Let X and Y be compact topological groups and p: Y' -» X a continuous

surjective homomorphism. Then there exists a Baire measurable map <p: X -* Y with

po<p = idx.

In particular the result announced in the introduction holds.

Remark. The map <p in the corollary can be chosen in such a way that it maps the

identity element onto the identity element (define a new section by x i-> <p(e)'x<p(x)).

Therefore one always has measurable cross sections in the sense of Rieffel [7, p. 872],

provided the groups involved are compact.
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Added in proof. Using the same methods, it can be shown that the answer to

Kupka's question—mentioned in the introduction—remains "yes" even if the

normality condition on the subgroup H is dropped.
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