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GRADED ALGEBRAS HAVING

A UNIQUE RATIONAL HOMOTOPY TYPE

HIROO SHIGA AND NOBUAKI YAGITA

Abstract. We consider the problem for which graded algebra A* complexes such

that H*(K,Q) ~ A* is unique up to homotopy type. A necessary and sufficient

condition is given using formal minimal model of A*.

1. Introduction. Rational homotopy types are homotopy types of localized spaces

at zero. In [2, 6] Sullivan constructed the theory of minimal models which algebrai-

cally describes rational homotopy types.

It was shown by Quillen, Sullivan and others [2, 4] that there exists a complex K

with H*(K; Q) =* A* for any simply connected commutative graded algebra A* over

Q-
We consider the problem, for which algebra A*, the complex K such that

H*(K, Q) — A* is determined uniquely up to rational homotopy type. The unique-

ness of the rational homotopy type of A* was shown by Mimura and Toda [3] when

A* is a tensor product of truncated polynomial algebras and by Body and Sullivan

[1, 7] when A* has a regular set of relations.

In this paper, when A* is of finite type, we shall show that it can be known, by

means of the minimal model of A* with d = 0, whether such rational homotopy type

is unique or not.

In §2, we recall the definition and the construction of minimal models. In §3, we

introduce condition (C) which roughly says that, for some n, we can choose a ring

homomorphism

o„_x:H*(m(A)(n-l))^A*,

such that the n + 1 dimensional kernel of a„_, cannot be transformed to that of p*

by any automorphism of m(A)(n — 1), and we can follow the way of construction of

minimal models based on m(A)(n — 1) and a„_,. For the definition m(A)(n — 1)

and pA see §2. This condition gives the possibility of the existence of models which

are not isomorphic to the formal one and will be shown to be necessary and

sufficient.

In §4, some examples are given. For example consider the algebras

A* = A (a, b, c, x)/ (a2bc, ab2c, abc2,1),

A\ = A (a, b, c, x)/ (a2bc, ab2c, abc2, ax, I)
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where | a | , \b\ , \c\ are even with | a | < | ft | < | c | , and |x| = |a| + 2 | ft | +2|c| .

Here | * | means the degree of * and 7 denotes the ideal generated by all elements of

degree >|ax| . Then we can show by using condition (C) that A\ has unique

homotopy type and A* has plural types. In §5, algebras which are uniquely

determined are studied, and we see uniqueness depends essentially on degree. In §6,

some remarks on functorial properties are given.

After writing this paper, we received a letter and a paper [8] from Professor James

Stasheff which contains many suggestions; he pointed out insufficiency of the first

version of the condition (C). We would like to take this opportunity to thank him.

2. Preliminaries to minimal models. Throughout this paper we consider only G.A.

(commutative graded algebra) A* over Q with A0 — Q, Ax = 0. A free G.A. means a

tensor product of a polynomial algebra of even dimensional elements and an exterior

algebra of odd dimensional elements, and we denote by A (*,,..., x„) the free

algebra generated by (x,,... ,x„). For each D.G.A. (differential G.A.) A* there is a

D.G.A. m*(A*), the minimal model of A*, which satisfies the following three

conditions:

(l)m*(^*)isfree;

(2) d(m*(A*)) is decomposable;

(3) there is a D.G.A. map p: m*(A*) -> A* such that p*: H*(m*(A*)) =¿ H*(A*).

Let m*(A*)(n) denote the subalgebra of m(A*) generated by elements of degree

< n. Then m(A*) is constructed by m(A*)(n) inductively as follows [2]:

m(A*)(n) = m(A*)(n - l){xk, 7¡m),

where {p(xk)} forms a basis for the cokernel of

p": H"(m(A*)(n - 1)) - H"(A*)

and {dr\m} forms a basis for the kernel of

pn+i:Hn+x(m(A*)(n - 1)) - H" + X(A*)

and p(rjm) = zm, where dzm = p(di\m).

Sullivan [2, 6] showed that rational homotopy types are in 1-1 correspondence

with minimal models of D.G.A. via the ^-polynomial differential forms. In this

paper we shall study the condition of unique existence of m(B*) with H*(m(B)) ^ A*

for a given G.A. A*.

3. A necessary and sufficient condition. For G.A. A*, we can construct the minimal

model of A*, regarded as a D.G.A., with differential d — 0. Using this minimal

model m(A*), we shall see when the complex K, with H*(K, Q) = A*, is determined

uniquely up to rational homotopy type.

Let pA: m(A*)(k) -» A* be the D.G.A. map constructed in §2. We consider the

following condition:

(C,) For some integer n, there exists a G.A. map

ok_x: H*(m(A)(n - I)) ^ A*

such that a„_, = pA for * «£ n — 1, and there is no D.G.A. automorphism

X: m(A)(n - 1) - m(A)(n - 1)
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satisfying

X'íkera^.r'Mkerpjr1.

Let m„ be a D.G.A. obtained from m(A)(n — I) by adding the cokernel of

o„_x: H"(m(A)(n - I)) ^ A"

and the kernel of

on_x:H"+x(m(A)(n-l))^A"+x.

Then we show

Lemma 3.1. The following are equivalent:

(a) (C,) is satisfied;

(b) mn and m(A\n) are not isomorphic.

Proof. (a)=>(b). Suppose we have the isomorphism <p: m„ -» m(A)(n). Put

<p | m(A)(n — l) = x- Then we have the following commutative diagram:

Hn+X(m„) S Hn+x(m(A)(n))
<p*

î /• îy

Hn+x(m(A)(n - 1))      S     Hn+x(m(A)(n - I))
x*

where / and/ are inclusions. Since (keri*)"+1 = (kera„_,)"+l and (ker/*)n+I =

(kerpj)"+l, from the above diagram, we have x*(keran_,)n+1 = (kerpjy+1.

(b) => (a). Since all elements of H"(m(A\n — 1)) are decomposable, a„_, and pA

are identical on H"(m(A)(n — 1)). Therefore (cokeron_x)" — (cokerpj)". If

X*(keran_,)''+1 = (kerpjf)"+1, we can extend x to an isomorphism m„ -> m(A\n).

Q.E.D.
Put m„_, = m(^l)(« — 1). If o-A_, and mk_, are defined, we define m^ inductively

by

mk = mk-\ ® Aij,,...,^,^,,...,«,),

where {y¡} forms a basis for the cokernel of ok_x in degree k and {</ny} forms a

basis for the kernel of ok_, in degree A: + 1.

(C2)k There exists a G.A. map ok so that the following diagram commutes:

H*(mk),

where ik_, : mlt_, -> mk is an inclusion and ot([,yt]) F ^.

Note that ok is then isomorphic for * < k and monomorphic for * = k + 1. If

(C,) and (C2)k are satisfied for each k > n, we say that condition (C) is satisfied.

If m(A) satisfies the condition (C), then m^ = U^w* is a free D.G.A. with

H*(mx) » A* and dm^ are decomposed. Hence mx is a minimal model of itself.
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The minimal models mx and m(A) are not isomorphic because mx(n) = mn and

m(A\n) are not isomorphic by Lemma 3.1. This shows that A* has plural homotopy

types.

Conversely if we have a D.G.A. m with H*(m) at A* which is not isomorphic to

m(A), then there is an integer n such that m(n — 1) and m(A)(n — I) are isomor-

phic but m(n) and m(A)(n) are not. Then we define ok by the composition

H*(m(k))^H*(m)^A*
/*

where i is the inclusion. By Lemma 3.1, condition (C,) is satisfied for a„_, and (C2)k

is also satisfied for each k s= n from the definition of ak. Thus we obtain

Theorem 3.2. A* has plural homotopy types if and only if the condition (C) is

satisfied.

Now we rewrite the condition (C) in terms of generators of m(A). We fix

generators of A* and m(A) as follows:

(I) A* = A(xx,...,xs)/(I) where 7 is an ideal;

(2)m(A) = A(xu...,x„ #„...,#„ £,,£2,...)

where dBi E A(x,,... ,xs), dHj & A(xx,... ,xs). Here we use the same notation x,

for closed generators of m(A) as for those of A*.

Let {[dit\, [M/lieue/ be a basis of (kerp*)"+1, and let

o„_y. H*(m(A)(n - I))-> A*

be a G.A. map such that a„_, = pj for * < n — 1. Set V = {i E I\o„_x(dí¡) is

decomposable in A*}.

Lemma 3.3. {[*/£,■ — Pj],[dOj]}¡erjeJ forms a basis for the (kera„_,)"+l, where P¡ is

any element in /\(xx,. .. ,xs) such that pA(P¡) = o„_i([*/£,-]). In particular

dime(kero„_i)"+1 = dim0(kerp^)"+1 ifand only if'o„ _,([*/£,•]) is decomposable for all

i El.

Proof. Since an_, = pjf for * < n — 1,

o([d0j]) = PA'{[d6j]) = O   and    a„„,([^,.- P,]) = aM_,([^,]) - pA(Pt) = 0.

Conversely, let y E (keran_,)"+1. Since 7i""+1(m(^)(n - 1)) is spanned by

(kerpj)"+l and A(jc,,. .. ,xs), we can writer as follows:

y=y\-yi,     y\ e (kerp*)"+I,     # g a (*,,...,*,)

and set v, = 2,e/c,[^,] + 2,6y</y[^]. Then 0 = o„„x(y) = o„_x(yx) - o„„x(y2)

= 2,cfc(ei,-i(re,D - p;(ä). Therefore v2 = [2,e/,c,7>,], and e, = 0 for i £ 7'. Thus

we have^ = 2<e/- c,[d^ - P,\ + 2JeJd^).   Q.E.D.

Now we consider the following condition.

(C,) There exists a G.A. map a„_,: H*(m(A)(n — 1)) -> A* for some integer /i

such that a„_, = p* for * *£ m — 1 and one of the following is satisfied:

(1) There is £,, 11, | = n, such that a„_ ,([</£,]) is not decomposable.

(2) For each D.G.A. automorphism x: m(A)(n - 1) -» m(A)(n — 1), there is £,,

| £,. | = n, such that ptx'ddi, - P,)) ¥> 0.
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Proposition 3.4. (C,) is equivalent to (C,).

Proof. By Lemma 3.3, (1) in (C,) implies dime(keran_,)"+l < dimß(kerpj) and

(2) in (C,) implies x*('cera„_1) C¿ (kerpj) for any automorphism x- Therefore

(c7)->(ct). _
If both (1) and (2) in (C,) are not satisfied, there is an automorphism x such that

P*X*([dîi - P¡]) = 0 for all i E V. This implies x*(keraB_,)"+l C (kerp*)"+1 by

Lemma 3.3 but since (1) is not satisfied, dimensions of both must coincide by

Lemma 3.3. Therefore x*(kera„_,)"+1 = (kerp*)"+1 and we have (C,)^(C^).

Q.E.D.

4. Examples. We consider some examples. The first three examples are determined

by (1) in (C,), and Example 4 is determined by (2) in (C,).

Example 1. Let A* = H*(Sa V SB V Sy), a, ß < y.

(1.1) a is odd and ß is even. Then A* » A (a, b)/(ab, b2) for * <y and

m(A*)^(a,b,6,e,,...,iij,...,ii,...) where dO=ab,  dff'= b2, d$ =dBi,diij =

a£{,_Hence its rational homotopy type is unique if and only if y — 1 7e | £, | = 2a

+ ß-2*\e2\=3a + ß-2,....
(1.2) Both o and ß are odd. Then for * < y, A* Ä A (a, b)/(ab), and m(A*) *

A (a, b, 0, £a, £fc)...) where d0 = ab, d^a = aO, d£b = bO,_ Hence the type is

unique if and only if y — 1 ¥= \ £a \ — ß + 2a — 2, ¥= \ £fc | = 2ß + a — 2,_

(1.3) Both a and ß are even. Then for * *£ y, A* » A (a, b)/(ab, a2, b2) and

m(A*)^A(a,b,0x,62,63,èx,£2,...) where ddx = a2, d02 = b2, d03 = ab, d£x =

b6x — a03, d£2 = a02 — b63, — Hence the type is unique if and only if y — 1 ¥=\t-x\

= 2a + ß- 2, 7¿|£2|= a + 2ß -2,....

Example 2. A* = A(a, b, c)/(ab, b2, be) = 77*((5a V S?) U ea+y V Sß), a, y

are odd and ß is even. Let | c | = y = | £, | = 2a + ß — 3. Then adi;x = a26 = 0 and

ac ¥= 0 in A*. Hence there is no G.A. map o(di-x) = c, and its rational homotopy

type is unique.

Example 3. (3.1) Let

A*x = A(a,b,c,x)/(K,ax, I)   and   A* = A (a, b, c, x)/ (K, I)

where K = (a2bc, ab2c, abc2), \a\<\b\<\c\ are even, |x| = |a| + 2 | ¿> | +2|c| —1

and 7 is the ideal generated by all elements of degree > | ax \ . Then

m(A*)(\x\-l)= A(a,b,c,6x,d2,63,èx,£2,è3)       (i = 1,2)

where dOx = a2bc, d02 = ab2c, d03 = abc2, d£x = cd2 - b63, di2 = a63 - c6x, d£3

= bOx - a02. Note that \dix\>\d£2\>\d£3\ and x =|£, | +1. Since ax = 0 in A*x

and a(cd2 — bd3) = -d(b£2 + c£3) in m(A^)(\ x \ — 1), we have a G.A. map

a: H*(m(A*)(\ x \ -2)) = H*( A (a, b, c, 0x,d2,63, £2, |3)) - A*

such that o(c62 — b03) — x. This clearly satisfies (1) in (C,). From the definition of

7, (C2)„ is also satisfied for n >\x\ . Hence A\ has plural homotopy types.

On the other hand since ax ^ 0 in A\, we cannot define a G.A. map

a; H*(A*2)(\x\ -2) ^ A*2
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satisfying (C,). By the definition of I, we cannot also define a G.A. map satisfying (C,)

for higher degree. Hence A\ has unique homotopy type. Let

A% = A (a, b, c, x, y, z)/ (K, ax + by + cz, I)   and

A*= A(a,b,c,x,y,z)/(K,I)

where | a \ = | b \ = | c | are even, |x| = |.y| = |z|=5|a|—1 and I is as in (3.1).

Since adl-x + bd£2 + cd£3 = 0, we can define a G.A. map

o: H*(m(A3)(\x\-2)) = H*(A(a,b,c,0x,02,03)) -* A3

such that o(c02 — bd3) — x, o(a03 — c6x) = y, o(b0x — a62) — z. By the arguments

similar to (3.1), we can show that A\ has plural homotopy types and A\ has unique

homotopy type. Let

(3.3) A*s = A(a,b,c, x)/(K, J)

where a, b, c are as in (3.1) and | aô | < | c | , | x | = 21 a | + 2 | Z> | +\c\ —1 and J be

the ideal generated by all elements of degree > | ex \. Then there is a G.A. map

o: H*(m(A*)(\ x | -2)) = H*( A (a, b, c, 6X, 02)) - A%

such that o(b0x — a02) = x, therefore (Cx) is satisfied. However, there is no G.A.

map

o: H*{m^ - H*(A (a, b, c, 0X,62, 63)) - A*5

because cx + bo(ad3 — cdx) + ao(cd2 — b63) ¥= 0 in A*. Hence (C2) is not satisfied.

Therefore A\ has unique homotopy type.

Example 4. When o„_x(c) = x is a ring generator, since x Ö m(A*)(n — 1), (C,)

is always satisfied. When x is a decomposable element, it seems complicated whether

(C,) is satisfied or not.

A* = H*((S3 X S6) V S4) = A (a, b, c)/ (ab, b2, be, c2),

(4,1) |a|=3,|*|=4,|c|=6.

Consider the minimal model

mU*)(8)= A(a,b,c,e,0',t)

where ab = dO, \ 0\= 6, b2 = d6', \ d' |= 7, ad = dt, \i\= 8. Then m(A*)(\ £\ -1)
ä A (a, b, c, 0, 6'), m(A*)(l)9 = Q{a0, ac}. There is an automorphism x for each X

so that x(0) — 9 ~ Xc, x — identity for other ring generators, and x(o6 + Xac) =

ad = dl-. Therefore (C,) is not satisfied and A* has a unique rational homotopy type.

A* = H*(S3 V (S4 X S5)) = A (a, b, c)/ (ab, b2, ac),
(4.2)
V     } |a|=3,|ft|=4,|c|=5.

Then the minimal model is

m(A*)(l)^A(a,b,c,0,e',6")   and   | a \<\ b\<\ c\<\ 0 \<\ 6' | = | 6" \ .

Then all automorphisms are x(/) = XJ for all ring generators /# 6', 0". Hence

there is no automorphism so that x(Q9 + Xbc) E dm(A*). Hence (C,) is satisfied.

Therefore A* has plural rational types.
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5. Uniquely determined cases. In this section we consider some cases when A* has

unique rational homotopy types. From condition (C,) the following lemma is

immediate.

Lemma 5.1. Under the notations (1) and (2) in §3, if A^+x = 0 for all ¿„ then A*

has a unique rational homotopy type.

Recall that an ideal 7 = (ax,...,at) is regular if each a, is not a zero divisor of

A(xx,...,xs)/(ax,...,ai_x).

Theorem 5.2 (Body [1], Sullivan [7]). Let A* — A(xx,...,xs)/I and 7 =

(a,,...,at) be regular. Then m(A*) = A(x,,...,xs, 6X,...,6,) where d6¡ = a,. Hence

A has a unique rational homotopy type.

Proof. We shall show that for each degree

kerd- Q{ A (xx,... ,xs),d A (x„. ..,6,)}    in A (xx,. ..,<?,),

there is no element £ in m(A*) with di¿\ Ö A(x„... ,jcA Hence then A* has a unique

rational homotopy type from Lemma 5.1.

By induction we assume that

kcrd^Q{A(xx,...,xs),dA(xx,...,ei))    in A (x„...,<?,).

Note that \8j\ is odd by the regularity. Let A6i+X + BEkerd, with A, BE

A(x„...,0,.). Then

(dA)6i+x +Ad8l+X + dB = 0.

Hence dA = 0 and from the assumption we can write A — dA' + x where x E

A(xx,...,xs),A' E A(xx,...,0j) and moreoverx Ö ideal(a,,...,a,) orx = 0. Con-

sider

0 = d(A0i+x +B- d(A'6i+x)) = d(-x8i+x + (B- A'ai+{))

= -xai+x+d(B-A'ai+x).

But d(B — Aai+X) S d(A(xx,...,8¡)) C ideal(a,,...,a,). Hence by the regularity,

we get x = 0. Therefore

A8i+X +B- d(A'8i+l) = B- A'ai+X E A (x,,...,Ô,).

By the inductive assumption, we have

/lí(.+ 1 + ])ee{A(x1,..„xJ),dA(xl,...,#|.+ 1)}.   Q.E.D.

Next we show that the uniqueness is essentially dependent on degree. For an odd

prime number p, let Äp* be a G.A. obtained from A* by multiplying each degree by

p, namely Äp* ^ A* if we ignore their degree, and we define |jc| = p|x| for

corresponding elements x, x.

Theorem 5.4. Let A* be of finite type, i.e., \A* |< n. Then if p > n, Äp* has a

unique rational homotopy type.

For the present, we prepare the following lemma.
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Lemma 5.3 [5, 7]. There is a decomposition m'(A) = ®J1>0Wj such that dWj C

WJlx, Wj ■ Wk C rVj'+k, where m'(A) denotes the ith dimensional part of m*(A).

Proof. Suppose we have a decomposition m'(A)(n — 1) = ®¡>0Wj such that

dWj C Wjlxx, Wj ■ Wk C Wj+k. Let m*(A)(n) = m*(A)(n - 1) ® A(o„ ßj) (i =

l,...,s; j=l,...,t), where da¡ = 0 and dßj = 2^0y/> y/ S **?+1- Then 0 =

d(dßj) = 2k>0 dyk, so ¿y* = 0 for each k. Consider the D.G.A. map p: m*(A)(n)

-* /I*. Since p*([y/]) = 0 for A: > 1 and the induced map p* is monomorphic there

are tj* such that dy* = i)*. Let F0" be the subspace spanned by a, and Vk (k ¡* 1) be

the subspace spanned by tj/_, (/= 1,...,/). Then by setting Wk = Wk ®Vk

(k S* 0), we have a desired decomposition using multiphcative law.   Q.E.D.

Proof of Theorem 5.4. Let the minimal model of A* be denoted by

m(A*) = A(xx,...,xs,iix,n2,...),

and take each generator tj, to be contained in some Wk. in Lemma 5.3.

We shall construct the minimal model of A^*. Let

m= A(xx,...,xs,rjx,i2,...),

\vs\ = p(i+j) ~j  if^ew^'.

If a = xt),¡ • • • i);-, i),- E ¡Mfc, then a E Wj  where   /' =| x \ +ix H-\-is, j =/,

4- • • • +/, and

\ä\ = \xrih,. ..,fj,J = p|x| +p(jx + ix) + ■■■ +p(js + /,) -js=p(i+j) -j-

Hence for all elements a E Wy we have | à | = p(i + /) — /.

Let drj = 1,xBfjB if í/t/ = 2xör/fl. Since d^' C VF'J1",1, the degree of d is

- (H»' +/) -/) + (P(i + 1 +/ - 0 -/ + 1) = +1.

It is immediate that H*(m, d) ^ Äp*. Therefore m is the minimal model of Äp*.

If | i\s | = pi for some /, then i\s E W^, and

pl = p(i+pl')-pl'>p(p- l)>pn^\Äp*\ .

Therefore from Lemma 5.1 we have the theorem.   Q.E.D.

In the following we see a case when condition (C2) is satisfied.

Theorem 5.5. Under the notations (1), (2) in §2, if there exists x # 0 E y4'ííl + 1 such

that the condition (C,) is satisfied and ax = 0 for all a E A* of positive degree, then A*

has plural rational homotopy types.

Proof. We take the generators |, such that each |, is contained in some Wk in

Lemma 4.3.

Let n=|£,|. Let (c,ex,e2,...) be elements in m(A*)(n — 1) which are ring

generators of dimension > n in H*(m(A*)(n — I)). lf[y] = [Ç] in H*(m(A*)(n — I))

where y < A(x,,...,*,) and f E ideal(c, ex, e2,...), then from Lemma 4.3, y =

d{2y¡9,) for some y[ E A(xx,...,xs), and hence 0 = [y] E H*(m(A*)(n - 1)).

Since ax = 0 for all a of positive degree, we can define a G.A. map

o:H*(m(A*)(n- I)) ^ A*

by o([c]) - x and a([e,]) = 0 for all e,.



UNIQUE RATIONAL HOMOTOPY TYPE 631

Next assume that for h > k > n — 1 there is a G.A. map

o : H*(mk) -» A*

such that a*([c]) = x and each ok([ek]) = 0, where (ek¡, ek2,...) are ring generators

of dimension > k + 1 in H*(mk).

Let di\j — y + b and | i\j,\ = I < h where y E A(xx,...,xs, yx,...,y,), and b E

ideal(0„... ,£„... ,£,_„ tj„... ,tl,_ ,). By the construction r\j in (C) in §3, (t,([í/t/7-])

= <*/([.y + *]) = 0. If è ^ c, then by the assumption o,([b]) = 0 and so o,([^]) = 0.

Therefore we can make ij, one of the following (l)-(3);

(1) dr)x = c — x (when x is a decomposed element),

(2)di1iE A(Xl.xs,yx,...,yt),

(3) dt\i E ideal(0„... ,£„... ,£,_„ tj„... .n,-.,).

We consider the case when x is a decomposed element. Let (ex,e2,...) be

elements in mh+x which are ring generators of dimension h + 1 in H*(mh+X). Let

y E A(xx,...,yk), f E ideal(c, ex, e2,...) and let [y] = [f]. Let jy - f = ¿/£ and

X = Si/T/'! where q¡ E A(...,ijx,...). Then we have

j - f = i/^o + qxd + dqxr\ + - - - = dq0~ qxx + qxc + (dqx)r\ + ■■■ .

Considering terms which are contained in A(*,,... ,yt), we can write

y = d(2y;e, + lyf'r,.) + q\x

where y¡, y„ drjj E A(xx,...,y,) and q\ E A(xx,...,yt). Therefore we get [y] =

[x][<7,]. Hence we can define the G.A. map

ok+l: H*(mh+i) -» A*

by oh+,([c]) = x and oh+ ,([e,]) = 0, since ax = 0 in A*.

When x is a decomposed element, similarly but rather simply we can prove the

existence of oh+x. Therefore the condition (C) in §3 is satisfied.   Q.E.D.

6. Some remarks. Here we note some functorial properties. Let A*, B* be G.A.

and let A* V B* - A* ® B*/(A+ <8>B+ ) where A+ , B+ are the ideals of positive

elements; namely, if A* = H*(X) and B* = H*(Y) then A* V B* = H*(XV Y).

The following proposition is immediately obtained by Corollary 3 in [5].

Proposition. (1) If A* has plural homotopy types, then so has A* V B* for any

G.A. B*.

(2) If A* has plural homotopy types, then so has A* ® B* for any G.A. B*.

The following example shows that subalgebras of a G.A. having unique homotopy

type need not have unique homotopy type.

Example. Let A* = A(a, b, c, x)/(a2bc, ab2c, abc2I), |a| = |6| = |c|= 2, |x| =

13, and / is the ideal generated by elements of degree > 14. Then there is no

generator of degree 13 in m(A), so by Lemma 5.1, A* has unique homotopy type.

Consider its subalgebra B* = A(a, abc, x)/(a(abc),(abc)2,1'), V is the ideal of

elements of degree s* 14. Then its minimal model is

m(B)= A(a,abc,0x,62,Z,...)
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where d$x = a(abc), d02 — (abe)2, di = (abc)6x — ad2. £ is of jegree 12; we can see

B* has plural homotopy types.
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