THE ONLY GENUS ZERO n-MANIFOLD IS Sⁿ

MASSIMO FERRI AND CARLO GAGLIARDI

ABSTRACT. All *n*-manifolds of regular genus zero, i.e. admitting a crystallization which regularly imbeds into S^2 , are proved to be homeomorphic to S^n . A conjecture implying the Poincaré Conjecture in dimension four is also formulated.

SUNTO. Si dimostra che tutte le n-varietà di genere regolare zero, cioè aventi una cristallizzazione che si immerge regolarmente in S^2 , sono omeomorfe a S^n . Si formula anche una congettura che implica quella di Poincaré in dimensione quattro.

1. Throughout this paper, we work in the PL category, for which we refer to [RS]; for graph theory, we refer to [Har]. \cong denotes PL-homeomorphism.

An h-coloured graph (Γ, γ) is a multigraph Γ , regular of degree h, together with a coloration γ of the edges by h colours. If $\mathcal K$ is the colour set, and $\mathfrak B \subset \mathcal K$, $\Gamma_{\mathfrak B}$ will denote the subgraph of Γ generated by the edges e such that $\gamma(e) \in \mathfrak B$. Given a colour $c \in \mathcal K$, $\hat c$ will denote the set $\mathcal K - \{c\}$. An h-coloured graph (Γ, γ) is said to be contracted if $\Gamma_{\hat c}$ is connected for each $c \in \mathcal K$.

To every (n+1)-coloured graph (Γ, γ) , there corresponds an n-dimensional pseudocomplex $K(\Gamma)$, whose i-simplexes are in one-one correspondence with the connected components of the subgraphs $\Gamma_{\mathfrak{B}}$ for all colour subsets \mathfrak{B} of cardinality $\mathfrak{B} = n - i$. Note that, if (Γ, γ) is contracted, then $K(\Gamma)$ has exactly n + 1 vertices. For every closed, connected n-manifold M, there exists at least one contracted (n+1)-coloured graph (Γ, γ) such that $|K(\Gamma)| \cong M$; such a graph is called a crystallization of M, and $K(\Gamma)$ a contracted triangulation of M. For the existence and equivalence theorems for crystallizations, see $[P, F, FG_1]$; these and other results are also summarized in [FGG].

We recall the notion of regular genus of a manifold, defined in $[G_3]$, which generalizes the genus of a surface and Heegaard genus of a 3-manifold. A 2-cell imbedding $[\mathbf{Wh}, p. 40] \iota: |\Gamma| \to F$ of an (n+1)-coloured graph (Γ, γ) into a closed surface F is said to be regular if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_n)$ of the colour set, such that each region of ι is bounded by the image of a cycle, whose edges are alternatively coloured by ε_i , ε_{i+1} (i being an integer mod i 1). The regular genus $\rho(\Gamma)$ of Γ is defined to be the least genus of a surface into which

Received by the editors April 23, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57N15, 57Q99; Secondary 05C10, 05C15, 57Q15. Key words and phrases. PL-manifold, genus, Heegaard genus, multigraph, 2-cell imbedding, regular

genus, crystallization, pseudocomplex, generalized Poincaré Conjecture.

¹ The work was performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy.

 (Γ, γ) regularly imbeds. Given a closed *n*-manifold M, its regular genus (or simply genus) $\mathcal{G}(M)$ is defined as the integer

$$\mathcal{G}(M) = \min\{\rho(\Gamma) | (\Gamma, \gamma) \text{ is a crystallization of } M\}.$$

As usual, we shall identify a graph with its imbedded image.

[G_3 , Corollary 7] asserts, among other things, that a 4-manifold of genus zero is simply-connected. We shall extend this result to dimension n. This permits us to compute $\mathcal{G}(S^1 \times S^n)$, and further to prove the following fact, which confirms the geometrical significance of this invariant.

THEOREM 1. Let M be a closed, connected n-manifold; then

$$\mathcal{G}(M) = 0 \Leftrightarrow M \cong \mathbf{S}^n$$
.

REMARK 1. In view of Theorem 1, it would be interesting to study the behaviour of \mathcal{G} with respect to connected sums. \mathcal{G} is easily proved to be subadditive by direct construction. It is trivially additive in dimension 2; in dimension 3, the Heegaard genus—hence also the regular genus—is known to be additive too [Hak, §7]. If the same property held in dimension 4, as we conjecture, this would imply an affirmative answer to the 4-dimensional Poincaré Conjecture. In fact, as it is well known [M, §1.1; Wa; C], if M is a 4-dimensional homotopy sphere then, for a suitable nonnegative integer k, $M \sharp k(S^2 \times S^2) \cong S^4 \sharp k(S^2 \times S^2)$. But this would imply that $\mathcal{G}(M) = 0$, whence $M \cong S^4$.

We wish to thank M. Pezzana for the helpful discussions and ideas.

2. From now on, $\Delta_n = \{i \in \mathbb{Z} \mid 0 \le i \le n\}$ will be assumed as a colour set. For each $\mathfrak{B} \subset \Delta_n$, $\mathfrak{g}_{\mathfrak{B}}$ will denote the number of connected components of $\Gamma_{\mathfrak{B}}$.

LEMMA 1. Let (Γ, γ) be a contracted (n+1)-coloured graph, such that $\rho(\Gamma) = 0$, and $\varepsilon = (\varepsilon_0, \dots, \varepsilon_n)$, a cyclic permutation of Δ_n associated to a regular imbedding ι of (Γ, γ) into S^2 . Let $\mathfrak{B} \subset \Delta_n$ contain at least three colours ε_{i-1} , ε_i , ε_{i+1} consecutive in ε (i taken in \mathbb{Z}_{n+1}). Then $\mathfrak{g}_{\mathfrak{B}} = \mathfrak{g}_{\mathfrak{B} - \{\varepsilon_i\}}$.

PROOF. As (Γ, γ) is contracted, $\Gamma_{\hat{\epsilon}_i}$ is connected. Call γ' and ι' the restrictions of γ and ι respectively to the latter graph; then $(\Gamma_{\hat{\epsilon}_i}, \gamma')$ is an *n*-coloured graph, regularly imbedded by ι' into S^2 . Namely, ι' is a 2-cell imbedding [Wh, Theorem 6.11], and colours ϵ_{i-1} , ϵ_{i+1} are now contiguous in the corresponding permutation of $\Delta_n - \{\epsilon_i\}$; hence, $(\epsilon_{i-1}, \epsilon_{i+1})$ -coloured cycles bound regions of ι' .

Therefore, each edge coloured by ε_i joins two vertices of the same component of $\Gamma_{\{\varepsilon_{i-1},\varepsilon_{i+1}\}}$, thus also of the same component of $\Gamma_{\Re - \{\varepsilon_i\}}$. \square

LEMMA 2. Let (Γ, γ) and ε be as in Lemma 1. Let further $\mathfrak{B} = \Delta_n - \mathfrak{B}'$, where \mathfrak{B}' contains no two colours consecutive in ε . Then $\mathfrak{g}_{\mathfrak{B}} = 1$.

PROOF. Follows from Lemma 1, by induction on #\mathfrak{B}'. \quad \text{

PROPOSITION 1. For a closed, connected n-manifold M, $\mathfrak{G}(M) = 0 \Rightarrow M$ is simply-connected.

PROOF. Obvious for n = 2. For n > 2, if (Γ, γ) of Lemma 2 is a crystallization of M, and $\mathfrak{B} = \Delta_n - \{i, j\}$ with i and j not consecutive in ε , then there is only one component of $\Gamma_{\mathfrak{B}}$. Then $[G_2, \S 6$, Proposition 9] proves the statement. \square

As conjectured in [FG₂, §6], we have

COROLLARY 1. $\mathcal{G}(\mathbf{S}^1 \times \mathbf{S}^n) = 1$.

PROOF. $\mathcal{G}(\mathbf{S}^1 \times \mathbf{S}^n) > 0$ by Proposition 1.

In order to see that $\mathcal{G}(S^1 \times S^n) \leq 1$, consider the following construction of a crystallization of $S^1 \times S^n$, which generalizes $[G_2, Figures 1, 8]$ $[FG_2, Figures 4, 7]$ and is obtained by applying the method illustrated in $[FG_2, \S 2]$.

Take 2n+4 vertices v_j^i ($i \in \Delta_1$, $j \in \Delta_{n+1}$). Join v_j^i with v_{j+1}^i ($i \in \Delta_1$, $j \in \Delta_{n+1}$) by an edge coloured by j. Put a further edge coloured by n+1 between v_0^i and v_{n+1}^i ($i \in \Delta_1$) if n is even, between v_0^0 and v_{n+1}^1 and between v_0^1 and v_{n+1}^0 if n is odd. Finally, join v_j^0 with v_j^1 ($j \in \Delta_{n+1}$) by n edges coloured by the n colours not yet used around those vertices.

The fact that such a graph can be regularly imbedded into the torus—with respect to every cyclic permutation of Δ_{n+1} —follows from the equality $\mathfrak{g}_{\{i,j\}} = n$ for all $i, j \in \Delta_{n+1}, i \neq j$ (see [FGG, §5]). \square

3. Proof of Theorem 1. It is trivial to see that $M \cong S^n \Rightarrow \mathcal{G}(M) = 0$, as S^n admits a standard crystallization consisting of two vertices joined by n+1 differently coloured edges; this graph obviously imbeds regularly into S^2 with respect to every cyclic permutation of Δ_n .

The proof of the converse implication consists of some general considerations followed by three parts, relative to the cases (A) n odd, (B) n even and $\neq 4$, (C) n = 4.

In the following construction, which was first introduced in $[G_1]$, M is an arbitrary closed n-manifold (not necessarily of genus zero), (Γ, γ) a given crystallization of it, and K the relative contracted triangulation.

In the vertex set $V = \{v_0, \dots, v_n\}$ of K, assume that v_i corresponds to Γ_i . For each nonvoid subset W of V, set W' = V - W, and call K_W the contracted subcomplex of K generated by W. If W = h + 1, then dim $K_W = h$. Furthermore, if \mathfrak{B} is the subset of Δ_n such that $W = \{v_i \mid i \in \mathfrak{B}\}$ and $\mathfrak{B}' = \Delta_n - \mathfrak{B}$, then the number of h-simplexes of K_W equals $\mathfrak{g}_{\mathfrak{B}'}$; this is easy to check. Now let L be the largest subcomplex of Sd K, disjoint from Sd $K_W \cup$ Sd K_W . Then L, whose space is a closed (n-1)-manifold, splits K into two complementary subcomplexes, N_W and $N_{W'}$ say, having L as common boundary. Moreover, $|N_W|$ and $|N_{W'}|$ are regular neighbourhoods, in |K|, of $|K_W|$ and $|K_{W'}|$ respectively. Observe that, in dimension three, if #W = 2, then $(|N_W|, |N_{W'}|)$ is a Heegaard splitting of M.

From now on, the hypothesis $\rho(\Gamma) = 0$ will be assumed, and $\iota: |\Gamma| \to S^2$ will denote a regular imbedding of (Γ, γ) ; w.l.o.g., ι can be assumed to be associated to the fundamental cyclic permutation $\varepsilon = (0, 1, ..., n)$.

² Sd means "barycentric subdivision of"; it carries every pseudocomplex to a simplicial complex.

(A)
$$n = 2r + 1, r \ge 0$$
.

Set $\mathfrak{B} = \{2k+1 \mid 0 \le k \le r\}$, $\mathfrak{B}' = \Delta_n - \mathfrak{B}$; call W, W' the corresponding subsets of V. By Lemma 2, $\mathfrak{g}_{\mathfrak{B}'} = \mathfrak{g}_{\mathfrak{B}} = 1$, whence $K_{W'}$ and $K_{W'}$ consist of exactly one r-simplex each. Therefore $|N_W|$ and $|N_{W'}|$ are closed (2r+1)-balls; they cover M, and meet in their common boundary |L|. Thus $M \cong \mathbf{S}^{2r+1}$.

(B)
$$n = 2r, r \neq 2$$
.

 \mathfrak{B} , \mathfrak{B}' , W, W' as in case (A). Here, Lemma 2 only assures that $\mathfrak{g}_{\mathfrak{B}'}=1$, hence that $|N_W|$ is a 2r-ball. The 2r-complex N_W , whose boundary L has a (2r-1)-sphere as space, has the homotopy type of the (r-1)-complex $K_{W'}$. These facts, applied to the Mayer-Vietoris homology sequence of $K=K_W\cup K_{W'}$ and $L=K_W\cap K_{W'}$, together with Poincaré duality, imply that $M\cong |K|$ is a homology sphere. Therefore, as a consequence of Proposition 1 and of the Hurewicz isomorphism theorem, M is even a homotopy sphere. This, which holds for all r, implies that $M\cong S^{2r}$ when $r\neq 2$, by the generalized Poincaré Conjecture (Smale, Stallings and Zeeman).

(C)
$$n = 4$$
.

 $\mathfrak{B} = \{1,3\}, \mathfrak{B}' = \{0,2,4\}; W, W' \text{ as before. Again, } \mathfrak{g}_{\mathfrak{B}'} = 1 \text{ implies that } |N_W| \text{ is a 4-ball.}$

In order to show that $|N_{W'}|$ is a 4-ball too, let us examine $K_{W'}$ in some detail. Since $\mathfrak{g}_{\{1,3,4\}} = \mathfrak{g}_{\{0,1,3\}} = 1$ by Lemma 2, $K_{\{v_0,v_2\}}$ and $K_{\{v_2,v_4\}}$ are formed by one 1-simplex each. Hence all triangles forming $K_{W'}$ have two edges in common; then $K_{W'}$ will be a cone over the 1-pseudocomplex $K_{\{v_0,v_4\}}$ if it consists of as many triangles as there are edges in $K_{\{v_0,v_4\}}$. But this is actually the case, as $\mathfrak{g}_{\{1,2,3\}} = \mathfrak{g}_{\{1,3\}}$ by Lemma 1. Therefore $|K_{W'}|$ is collapsible, $|N_{W'}|$ is a 4-ball (by Whitehead's theorem [RS, Corollary 3.27]), and $M \cong S^4$. \square

For $n \ge 2$ we have

COROLLARY 2_n . Let (Γ, γ) be a contracted (n+1)-coloured graph such that $\rho(\Gamma_i) = 0$ for each $i \in \Delta_n$. Then $|K(\Gamma)|$ is a manifold.

PROOF. For each $i \in \Delta_n$, Γ_{Γ} is connected and of regular genus zero. If n = 2, Γ_{Γ} is a cycle and hence represents S^1 . If $n \ge 3$, the fact that $|K(\Gamma_{\Gamma})| \cong S^{n-1}$ is assured by Corollary 3_{n-1} . This proves that, for each vertex v of $K(\Gamma)$, $|lk(v, Sd K(\Gamma))| \cong S^{n-1}$, and this suffices to prove the statement (compare [F, Proposition 16]). \square

COROLLARY 3_n . Let (Γ, γ) be a connected (n + 1)-coloured graph such that $\rho(\Gamma) = 0$. Then $|K(\Gamma)| \cong S^n$.

PROOF. By eliminating a suitable number of dipoles of type 1 [FG₁, §3] one obtains a contracted graph (Γ', γ') . Now let $\iota: |\Gamma| \to S^2$ be a regular imbedding of (Γ, γ) into S^2 relative to the cyclic permutation ϵ . Then by [FG₂, Lemma 1] there exists also an imbedding $\iota': |\Gamma'| \to S^2$ relative to the same ϵ .

If $|K(\Gamma')|$ is a manifold, i.e. if (Γ', γ') is a crystallization, then $|K(\Gamma')| \cong |K(\Gamma)|$. But $|K(\Gamma')|$ is actually a manifold by Corollary 2_n , since ι' induces a regular imbedding of each $(\Gamma_i, \gamma|_{\Gamma_i})$ into S^2 . Therefore $|K(\Gamma)| \cong |K(\Gamma')| = S^n$ by Theorem 1 applied to (Γ', γ') . \square

REFERENCES

- [C] S. S. Cairns, The manifold smoothing problem, Bull. Amer. Math. Soc. 67 (1961), 237-238.
- [F] M. Ferri, Una rappresentazione della n-varietà topologiche triangolabili mediante grafi (n + 1)-colorati, Boll. Un. Mat. Ital. B 13 (1976), 250–260.
 - [FG₁] M. Ferri and C. Gagliardi, Crystallisation moves, Pacific J. Math. 98 (1982).
 - [FG₂] _____, On the genus of 4-dimensional products of manifolds (to appear).
- [FGG] M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PL-manifolds—A survey on crystallizations (to appear).
- [G₁] C. Gagliardi, Spezzamenti alla Heegaard per varietà n-dimensionali, Boll. Un. Mat. Ital. A 13 (1976), 302-311.
- [G₂] _____, How to deduce the fundamental group of a closed n-manifold from a contracted triangulation, J. Combinatorics Information Syst. Sci. 4 (1979), 237–252.
- [G₃] _____, Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473-481. [Hak] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, No. 5, Math. Assoc. Amer., Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39-98.
 - [Har] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969.
- [M] R. Mandelbaum, Four-dimensional topology: An introduction, Bull. Amer. Math. Soc. 2 (1980), 1-157.
- [P] M. Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 269-277.
- [RS] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, Berlin and New York, 1972.
 - [Wa] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149.
 - [Wh] A. T. White, Graphs, groups and surfaces, North-Holland, Amsterdam, 1973.

ISTITUTO DI MATEMATICA, FACOLTÀ DI INGEGNERIA, V. CLAUDIO, 21, I 80125 NAPOLI, ITALIA