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LOCAL ISOMETRIES OF COMPACT METRIC SPACES

ALEKSANDER CALKA

ABSTRACT.   By local isometries we mean mappings which locally preserve

distances. A few of the main results are:

1. For each local isometry / of a compact metric space (M,p) into itself

there exists a unique decomposition of M into disjoint open sets, M = Ai g U

• • • U Ai>, (0 < n < oo) such that (i) f(M}0) = M!Q, and (ii) f(M{) C M{_x

and M< ^ 0 for each i, 1 < i < n.

2. Each local isometry of a metric continuum into itself is a homeomorphism

onto itself.

3. Each nonexpansive local isometry of a metric continuum into itself is an

isometry onto itself.

4. Each local isometry of a convex metric continuum into itself is an

isometry onto itself.

1. Introduction. A mapping / of a metric space (M, p) into a metric space (N, 6)

is said to be a local isometry if for each z Ç. M there exists a neighborhood U of z

such that

(1) S(f(x),f(y)) = p(x,y)   for all x, y EU.

Mappings, as above, satisfying (1) with U = M are called isometries.

The present paper concerns local isometries of compact metric spaces into itself.

In §3 we collect the necessary information concerning locally nonexpansive map-

pings. In §4 we prove the main result: For each local isometry / of a compact

metric space (M, p) into itself, there exists a unique decomposition of M into dis-

joint open sets, M = M* U • • • U M¿, such that (i) f(Mf0) = M¿, (ü) f(M{) C

M{_x and M{ ^ 0 for each i, 1 < i < n. Moreover, there is a metric on

M, topologically equivalent to p, with respect to which / is a nonexpansive local

isometry and maps M^ isometrically onto itself. §5 contains some consequences

of the main result. Namely, we prove: Each local isometry of a metric continuum

into itself is a homeomorphism onto itself. Each nonexpansive local isometry of a

metric continuum into itself is an isometry onto itself. Each local isometry of a

convex metric continuum into itself is an isometry onto itself.

It should be mentioned that open surjective local isometries were studied by

Busemann [2] (cf. also [3]), Kirk [6] and Szenthe [10], in the special case where (M, p)

is a G-space (Busemann [2] called them "locally isometric mappings"). Busemann

[2, (27.14)] proved that every open local isometry of a compact G-space onto itself

is an isometry. Thus (5.5) of the present paper generalizes this result to the case of

general local isometries of convex metric continua.
-
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2. Some preliminaries.  The following definition is introduced:

(2.1) Definition. Let pi, i = 0,1, be metrics on a set M. We shall say that px

is locally identical with po if the identity mapping, id a*, of M is a local isometry

of the metric space (M, po) into the metric space (M, pi). We shall say that p\ and

Po are locally identical if p¿ is locally identical with pj, for all i,j = 0,1.

(2.2) REMARKS. Let p», i = 0,1, be metrics on a set M. If pi and po are

locally identical then they are topologically equivalent. If the metric space (M, p0)

is compact and p\ is locally identical with po then p\ and p0 are locally identical

(and topologically equivalent). If / is a local isometry of (M, pQ) into itself and p\

and po are locally identical then / is a local isometry of (M, pi) into itself.

(2.3) Definition. A mapping / of a metric space (M, p) into a metric space

(N, 6) is said to be locally nonexpansive if for each z G M there exists a neighbor-

hood U of z such that

(2) à(f(x),f(y))<p(x,y)   for allx,y G U.

Mappings, as above, satisfying (2) with U = M are called nonexpansive.

(2.4) REMARKS, (a) Local isometries (isometries) are locally nonexpansive

(nonexpansive) mappings.

(b) Let / be a local isometry (a locally nonexpansive mapping) of a compact

metric space (M, p) into itself. Then there exists a number e > 0 such that for all

x, y G M,

(3) p(x, y) < e implies p(/(x), f(y)) = p(x, y)

(respectively,

(4) p(x, y)<e implies p(/(x), f(y)) < p(x, y)).

In the sequel we need the following well-known facts which may be found in [5

and 7] (or in [9]).

(2.5) LEMMA. Each nonexpansive mapping of a compact metric space onto itself

is an isometry.

(2.6) LEMMA. Each isometry of a compact metric space into itself is a surjection.

3. Locally nonexpansive mappings and induced metrics.

(3.1) DEFINITION. Let / be a mapping of a metric space (M,p) into itself.

Then the function pf defined by (f° = idM, fn+1 = / ° /"),

pf(x, y) = sup p(fn(x), fn(y))   for all x, y G M,
n>0

will be called the induced metric on M.

Note. If / is a mapping of a bounded metric space (M, p) into itself then the

induced metric p/ is a metric on the set M such that

(5) Pf > P,

(6) / is a nonexpansive mapping of the metric space (M, p/) into itself,

(7) pf = p if and only if / is a nonexpansive mapping of ( M, p) into itself.
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We have

(3.2) LEMMA. Let f be a locally nonexpansive mapping of a compact metric space

(M, p) into itself. Then the induced metric, pf, is a metric on M such that pf and

p are locally identical. In particular, p¡ and p are topologically equivalent.

PROOF. Since (M, p) is compact, it is bounded and thus p¡ is a metric on M.

Let e > 0 be a number satisfying (4). Thus, by induction, p(fn(x), fn(y)) <

p(x, y) for each n > 0 and all x, y G M with p(x, y) < e. Hence, p/(x, y) = p(x, y)

for all x, y G M with p(x, y) < e, which shows that p/ is locally identical with p

and therefore by (5) (or by (2.2)), pf and p are locally identical.

REMARK. It should be noted that, conversely, if / is a mapping of a bounded

metric space (M, p) into itself such that the induced metric pf is locally identical

with p then / is locally nonexpansive.

(3.3) Proposition. Let f be a locally nonexpansive mapping of a compact metric

space (M, p) into itself and let pf be the induced metric on M. Then p¡ is a metric

on M such that pf and p are locally identical and f is a nonexpansive mapping of

(M, pf) into itself, which maps the set f]n>o fn(M) isometrically onto itself.

PROOF. By (3.2) and (6) we need only show that / maps the set nn>o fn(M)

isometrically onto itself in the metric pf. However, since the sequence oFcompact

sets fn(M), n = 0,1,..., is decreasing, hence / maps the compact set fln>o fn(M)

onto itself and our assertion follows from (2.5).

We have the following immediate corollaries of (3.3) (cf. also (2.2)):

(3.4) COROLLARY. Let f be a locally nonexpansive mapping of a compact metric

space (M, p) onto itself and let pf be the induced metric on M. Then pf is a metric

on M such that pf and p are locally identical and f is an isometry of (M, p¡) onto

itself.

(3.5) COROLLARY. Each locally nonexpansive mapping of a compact metric

space onto itself is a homeomorphism and a local isometry.

4. Decomposition theorem.   To show the main result we need two lemmas.

(4.1) Lemma. Iff is an injective local isometry of a compact metric space (M,p)

into itself, then f is also surjective.

PROOF. Let e > 0 be a number satisfying (3). Since M is compact, / is a

homeomorphism onto a compact subset of M, therefore there is a number 6 > 0

such that for all x, y G M,

(8) p(f(x), f(y)) < 6 implies p(x, y) < e.

Let r = min{5, e} and let pr(x, y) j= min{p(x, y), r} for all x, y G M. Thus pr is

a metric on M topologically equivalent to p and it follows from (3) and (8) that /

is an isometry of (M, pr) into itself. Our assertion follows now from (2.6).

(4.2) LEMMA. Let f be a local isometry of a compact metric space (M, p) into

itself. Then the set B = C\n>o fn(M) is an open and closed subset of M and

f(B) = B.
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PROOF. By (3.3) (cf. also (2.2)) it is sufficient to prove this in the case where

/ is a nonexpansive local isometry and maps B isometrically onto itself, which we

now assume.

For each r > 0, let B(r) = {x£M: p(x, B) < r}. Thus

(9) f(B(r))CB(r)   forallr>0.

Let e > 0 be a number satisfying (3). We assert that / maps B(e/4) injectively

into itself.

In fact, let x, y G B(e/4) be such that f(x) = f(y). Then p(x, o) < e/4 and
p(y,b) < e/4 for some a,b£ B and by our assumption we have

p(a, b) = pif{a), f{b)) < p{f{a), f{x)) + p(f(y), f{b))

< p{a, x) + p{y, b) < e/2.

Thus

pix, y) < p(x, o) + p{a, b) + p(6, y) < e/4 + e/2 + e/4 = e,

and by the definition of e, p(x, y) = p(/(x), f(y)) = 0, therefore x = y, as desired.

Now, let 0 < r < e/4 and let N be the closure of B(r). Thus 7Y C B(e/4)
and by (9), the restriction of / to Af is an injective local isometry of N into itself.

Since N is compact, it follows from (4.1) that f(N) = N. Thus for each n > 0,

fn(N) = N, therefore N C fl„>o fn(M) = B- Hence, by the definition of N,
B(r) = N = B and therefore B is an open and closed subset of M. This completes

the proof.

(4.3) THEOREM. Let f be a local isometry of a compact metric space (M, p) into

itself. Then there exists a unique decomposition of M into disjoint open sets

(10) M = Ml U • • • U M n

such that

(11) f(Ml) = Ml
(12) f(M{ ) C M{_x    and   M{ ^ 0   for each i,l<i<n.

Moreover, the induced metric pf is a metric on M such that pf and p are locally

identical and f is a nonexpansive mapping of (M, p¡) into itself which maps M¿

isometrically onto itself.

PROOF. For each integer i > 0, let

(13) M{ = {nm^of"

1      \f-l(Mf)

\M) if i = 0,

'(MDXf-^XMf)   iîi = 0.

By (4.2) and (13), f(Mf0) = Mf0 and f(M{) C M{_x for each i > 0 and the

sets M(, i > 0, are disjoint, open and closed subsets of M. Since M is compact

and MI = nm>o /m(A7) i8 open, there exists an integer m > 0 such that M^ =

fm(M). Let n = min{m > 0: /m(A7) = MfQ}, then the sets M{, i = 0,... ,n,

cover M and if 1 < i < n then M( ^ 0.
This proves the existence of the decomposition (10) satisfying (11) and (12). For

the uniqueness, it is sufficient to observe that for each decomposition (10), conditions

(11) and (12) imply (13).
The last statement of the theorem follows from (3.3), hence the proof is complete.
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We note the following:

(4.4) COROLLARY. Let f be a local isometry of a compact metric space (M, p)

into itself. Then the following are equivalent

(i) / is injective,

(ii) / is surjective,

(iii) f is a homeomorphism of M onto itself.

Further, if f is a nonexpansive local isometry, those conditions are equivalent to

(iv) / is an isometry.

PROOF. The proof follows from (4.3), since each of (i)—(iii) is equivalent to

M^ = M, while if / is nonexpansive, then by (7), pf = p.

5. Some consequences.  For local isometries on continua we obtain

(5.1) Theorem. Let f be a local isometry of a metric continuum (M, p) into

itself and let pf be the induced metric on M. Then pf is a metric on M such that

Pf and p are locally identical and f is an isometry of(M, pf) onto itself.

PROOF. The proof follows from (4.3) since, M is connected implies A7¿ = M.

We have the following immediate corollaries of (5.1) and (4.4):

(5.2) COROLLARY. Each local isometry of a metric continuum into itself is a

homeomorphism onto itself.

(5.3) COROLLARY. Each nonexpansive local isometry of a metric continuum

into itself is an isometry onto itself.

The convexity in the next result is to be understood in the sense of Menger

[8] (cf. also [1]). A metric space (M, p) is convex if for each two distinct points

x,y G M there exists a point z G M, z^x,y, such that p(x,y) = p(x,z) + p(z,y).

The following fact is well known and may be found in [4, §3]:

(5.4) LEMMA. Each locally nonexpansive mapping of a convex metric continuum

into itself is (globally) nonexpansive.

(5.5) THEOREM. Each local isometry of a convex metric continuum into itself is

an isometry onto itself.

PROOF. The proof follows from (5.3) and (5.4).
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