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THE DIMENSION OF INVERSE LIMIT AND TV-COMPACT SPACES

M. G. CHARALAMBOUS

Abstract. For each k = 1,2,...,oo, we construct a normal JV-compact

space X with dim X = k, where dim denotes covering dimension, which is

the limit space of a sequence of zero-dimensional Lindelöf spaces.

Let X be the limit space of an inverse sequence (Xn, fnm)- In [1], we showed that

dimX can be positive even if X is normal and Xn is Lindelöf and zero dimensional

for each n in TV, the set of natural numbers. In this paper we continue investigating

the behaviour of covering dimension under inverse limits. We generalise the con-

struction in [1] to obtain, for each k — l,2,...,oo, an inverse sequence (Xn, fnm)

of zero-dimensional Lindelöf spaces with limit space X such that X is normal and

dimX = Ind-X" = k, where Ind denotes large inductive dimension. The space X

is, in addition, first countable, locally compact, countably paracompact and collec-

tionwise normal. Recall that a space is called TV-compact if it is the inverse limit

of countable discrete spaces. Every zero-dimensional Lindelöf space is A/-compact,

and so is the inverse limit of TV-compact spaces. It follows that X is AT-compact.

TV-compact spaces of positive covering dimension have previously been constructed

in [5, 6] and also [7, 8], but our space X seems to be the first example showing that

TV-compact spaces can have infinite dimension.1

In this paper, all spaces are Tychonoff. The usual metric on the Cantor set C is

denoted by d. I denotes the unit interval, w(c) the first ordinal of cardinality c, the

cardinality of the continuum, and |X| the cardinality of a set X.

For standard results in Dimension Theory we refer to [4].

1. Preliminaries. The construction of the spaces X and Xn in this paper is only

slightly more complicated than that of the corresponding spaces in [1]. In both

papers, we draw from the techniques employed in [2, 7, 8]. The constructions in

[1] made use of Wage's complete separable metric p on C which has the following

properties: (a) the p-topology is finer than the usual topology on C, (b) every p-Borel

set of C is d-Borel, and (c) every p-open set disjoint from a certain fixed p-closed

set E has boundary of cardinality c. The constructions in the present paper are

based on the existence of a separable metric e on C with the properties enumerated

in the following result.

PROPOSITION 1. For each k = 1,2,..., oo, there exists a separable metric e on

C with d < e and k pairs of disjoint e-closed sets Ei, Fi, i = 1,2,..., k, such that
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(1) every uncountable e-closed and every nonempty e-open subset of C has car-

dinality c.

(2) Whenever Li, i = 1,..., k, is an e-partition between Ei and Fi, then

c.Ç\ut=i
(3) dim(G, e) = k.

N.B. The condition d < e implies that the e-topology is finer than the usual

topology on C.

PROOF. Let Y = C X Ik and n = Y —► C the canonical projection. Let Q be

the collection of all subsets G of y such that |7r(G)| = c and G is either open or

closed. Note that \Q\ = c and we may choose an enumeration {Ga- ct < w(c)} of

Q such that for each G in Q, G = Ga for c ordinals a < w(c). For each a < w(c),

since |7t(Gq)| = c, we can choose by transfinite induction, a point xa in 7r(Ge,) so

that xa t¿ Xß for a ^ ß. Next, we define a function /: C —► Ik as follows. If

x = xQ for some a < w(c), we choose f(x) so that (x, f(x)) is in Ga. If not, we set

f{x) = 0.
Let X be the subspace {(x, f(x)): x G C} of Y. Then 7r: X —» G is bijective

and continuous. Consider an uncountable closed set E of X. Then E = FC\X for

some closed subset F of Y. Now the closed set ir(F) of G is uncountable and hence

has cardinality c, so that F is in p. If A = {a < w(c): F = Ga}, then E contains

{(xa, f(xa): a G A}, and since xa ^ xp for a^ft and |A| = c, we have |i?| = c.

Similarly, every nonempty open subset of X has cardinality c. In fact, |GflX| = c

for every G in Q.

Let A¿, Bj, i = 1,..., k, be the pairs of opposite faces of Ik. Let t/¿, V¿ be open

sets of Y such that G X A C Uit C X -B» C Vi and Í7¿ nFi = 0. Set Et = X n <7»,
F¿ = X n V¿, ¿ = 1,..., k, and suppose L¿ is a partition in X between i?j and

Fx. Then there exist disjoint open sets G¿, 77¿ of Y with £¡ C G¿, ^ C ííi and

X-(GiUi7¿) CL¿. Let P¿ = fT» U (G¿ - F¿), Q¿ = Vi U (77¿ -17,) and A7¿ =
Y — (Pi U Qi)- Then M¿ is a partition in Y between G X A and G X S¿ with

A7¿ n X C L¿. It follows that D¿=i -^i contains at least one point from {x} X Ik

for each x in G. Thus |7r(f|*:=1 A7¿)| = c, which implies that

f] MiDX
i=i

riA
i=l

C.

Now, by the Ottc-Eilenberg characterisation of covering dimension [4, Theorem

1.7.9], dimX > k and, since X is a subspace of the fc-dimensional space Y, we

have dimX as k.

Finally, to complete the proof of Proposition 1, it suffices to let, for x, y in G,

e(x, y) denote the usual Euclidean distance between the points (x, f(x)) and (y, f(y)).

We shall need the following result, which is the analogue for the metric e on G of

the well-known theorem on the existence of Bernstein sets in a complete separable

metric space.

PROPOSITION 2. There is a partition Ai, A2, A3,... ofC such that |AflF| = c

for each i in TV and each uncountable e-closed set F ofC.
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PROOF. Let 7 be the collection of all uncountable e-closed sets of G. Let

{Fa : a < uj(c)} be an enumeration of 7 such that for each F in 7, F = Fa for

c ordinals a < w(c). For each a, by Proposition 1, \Fa\ = c and thus we can

choose by transfinite induction points xai,za2,... in Fa so that xan ^ Xßm if

(a, n) ^ (ß, m). It now suffices to let A¿ = {xa¿ : a < w(c)} for t = 2,3,..., and

TV.B. It follows from Proposition 1(1), that each A¿ is e-dense in G.

2. The construction. In the sequel, A; denotes a fixed number of the set

{1,2,..., ce}, e the metric on C given by Proposition 1, and A\, A2,... the partition

of G provided by Proposition 2.

Let {(Sai,Sa2,.. ■): a < w(c)} be the collection of all sequences of countable

subsets of Ai with | HiLi ^atl = c- Since

= c,

for each a < a>(c), we can choose xa in Ai fl fl^Li ^m a*1** a sequence {xan} in

Ai so that e(xQ,xan) < ¿, {xQ„} contains infinitely many points from each Sai,

Xq j^ xp for a ^ /? and xan <3 xQ, where <] is some well-ordering on G of the

same type as u;(c). Let A = {xa : a < w(c)}.

For each x in G, we construct a decreasing sequence {Bm(x): m G TV} of

countable subsets of G containing x as follows. For x £ A, we set Sm(x) = {x}.

On A we define Bm by transfinite induction with respect to < by setting for each

a < w(c),

Bm(xa) = {xa} U \J(Bn(xan): n > 2m).

It follows by transfinite induction that if y G Bm(x), then Bn(y) C T3m(x) for

some n in TV, so that {Bm(x) : m G TV} constitutes a local base of open sets at

x with respect to some first countable, locally countable topology r on G. It is

readily seen that Bm(x) is d-closed and has e-diameter < ^. Hence r is finer than

the e-topology on G, Bm(x) is r-clopen and ind(G, r) = 0. In fact, each infinite

sequence in Bm(x) has an accumulation point in Bm(x), so that Bm(x) is r-compact

and (G, r) is locally compact. In the sequel, X denotes the space (G, r).

Next, for each ¿ in TV, we define a first countable topology r¿ finer than the d-

topology on G by defining at each point x a local base {Blm(x) : m G TV} consisting of

a decreasing sequence of d-closed sets containing x as follows. If x is in U£L¿+i -4j>

we let {Blm(x) : m G TV} be a decreasing sequence of d-clopen sets of G forming a

local d-base at x. Otherwise, we let Blm(x) == 5m(x). Clearly, ind(G, t¿) = 0. In

the sequel, X, stands for the space (G, Tj). It is readily verified that (Xj, /¿j), where

fij : Xj —► X» is the identity mapping, i < ?, constitutes an inverse limit sequence

with limit space X.

The short proof of the following result is almost identical with the proof of Claim

1 of [1]. We give it here for completeness.

Claim 1. For each i in TV, X, is a Lindelöf space with dimXj = 0.

PROOF. Since every open set of X¿ containing a point of A¿_|_i is a d-open

neighbourhood of that point, for any open cover U of X», we can choose d-open

sets Gn, n in TV, such that each Gn is contained in some member of U and A¿_)_i C

G = \Jn=i ^"- Since X»—G is an e-closed set of G which does not intersect An+x,

M^(]S\
i=l
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it follows from Proposition 2 that X» — G is countable. This clearly implies that

Xi is Lindelöf and hence, since indX» = 0, dimX¿ = 0.

Claim 2. X is normal, countably paracompact and collectionwise normal.

PROOF. Since X — Ai is a clopen discrete subspace of X, it suffices to show

that Ai is normal, countably paracompact and collectionwise normal. Note that if

B\,Bï, ... are closed subsets of Ay with P|*Li &i = 0> *nen CliLi B\ is countable.

For suppose that fl^Li B' is uncountable and hence has cardinahty c. For each

i in TV, let Si be a countable e-dense subset of B¿. Then for some a < w(c),

(51,52, ... ) = (Sai, Sa2, ... ) so that, by the definition of the topology r, xa is an

accumulation point of each 5¿. Hence xa G Dí'Li 7?t, a contradiction.

Let E, F be disjoint closed sets of Ai. Then Ai C\~Ee f\Fe is a countable zero set

of Ai and, using the fact that Ai is locally countable, we can construct a countable

cozero set Z of Ai containing it. Let P be a cozero and Q a zero set of Ai with

AiDE* OF* C P C Q C Z. Since indX = 0, then indZ < 0 and, since Z is
countable and therefore Lindelöf, we have dim Z < 0. Hence there exists a clopen

set Y of Z such that Ai n Ëe f~l Fe C Y C P- Clearly, Y is a closed subset of Q,
and thus Y is a countable clopen subset of Ai. Now Y is Lindelöf and therefore

normal, and hence there exist disjoint open subsets Gi,Hi oí Y with E C\Y C d

and F f]Y C Hi. Also, there exist disjoint e-open subsets G^jHi of Ai — Y

with Ai (1 Ee — Y C G2 and Ai n Fe — Y C H2. Finally, G = Gi U G2 and

7/" = i/i U H2 are disjoint open subsets of Ai with E C G and F C H. Thus Ai

is normal.

Let {B{ : ¿ G TV} be a decreasing sequence of closed sets of Ai with HiLi -B» = 0-

Ai is countably paracompact if there exists a decreasing sequence {Wj : i G TV} of

open sets of Ai with B¿ C Wj and flS=i W¿ = (Ï [3, Corollary 5.2.2]. Now B =
Ai nnS=i B' is a countable subset of the locally countable space Ai and hence it is

contained in a countable open set Y = {3/1, y2, ... } of Ai, where j/¿ jí yj for i ^ j.

We may assume B¿fhB C {yi, 2/t+i» • • • }• Let {Gi : i G TV} be a decreasing sequence

of e-open sets of Ai — B such that AiC\B\ — B C G¿ and D^Li G i = % and put
W¿ = Gi U {î/t) 2/t+i> • • • }• Then {W¿ : i G TV} is a decreasing sequence of open sets

of Ai with Bi C VVi and fl^Li WÍ == ̂ - Hence Ai is countably paracompact.

To prove that the normal space Ai is collectionwise normal, it suffices to show

that every discrete closed subset B of Ai is countable. Suppose the contrary, and

let S be a countable e-dense subset of B. Then \~5e\ = c and, for some a < w(c),

(5,5, ... ) = (Sai, Sa2, .. • ), so that, by the definition of r, xa is an accumulation

point of B, contradicting the fact that B is discrete. This concludes the proof of

Claim 2.

Claim 3. dimX = IndX = k.

PROOF. Let Ei, Fi, i = 1,..., k, be the e-closed sets of X occurring in
Proposition 1. For each i, let f7¿, V¿ be e-open sets of X with Ei C Í7», Fi C VÍ and

U\ n V" = 0, and suppose a closed subset Li of Ai is a partition between U\ and

Ff. Write Li = M i n TV, where M», TVi are closed sets of Ax with f7f n TVi = 0,
V¿ n A7¿ = 0 and Ai = A7¿ U TV¿. Then it follows from the fact that Ai is e-dense
in X that M\ fl TV" is an e-partition between i?¿ and F<. Hence, by Proposition 1,

I nLi *?? n TV?I = c, which implies that f|*=i M n TV^ = flÍLi ¿i ^ 0- Now by
the Eilenberg-Otton characterisation of covering dimension we have dimX > k.
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Consider next a closed subset A of Ai with dim(A, e) < n. Let E, F be disjoint

closed subsets of A. Then B = Ee n Fe D A is countable and hence is contained

in a countable open set Y of A. Clearly, dim Y < 0 and hence, since also A is

normal, there is a clopen set Z of A with B C Z C Y. Also, there are disjoint

open sets P, Q of Z such that E f] Z C P, FnZCQaiidZ = P\jQ. Now
Ind(A— Z, e) < Ind(A, e) < n, and so there are disjoint e-open sets U, V of A — Z

such that AnËe —Z C U,AÇ\Fe — Z C V andInd(A— (i/UVUZ),e) < n —1.
Then G = í7uP, 77 = V\jQ are disjoint open sets of A with E C G, F C 77 and
lnd(A—(GUíO,e) < n — 1. It follows by induction that IndA < n. In particular,
IndAx < Ind(C, e) = k and hence, since the discrete space X — Ai is clopen in X,

IndX < k. Hence, in view of the inequality dim < Ind, which holds for all normal

spaces, we have dimX = IndX = k.
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