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THE DIMENSION OF INVERSE LIMIT AND N-COMPACT SPACES

M. G. CHARALAMBOUS

ABSTRACT. For each k = 1,2,...,00, we construct a normal N-compact
space X with dim X = k, where dim denotes covering dimension, which is
the limit space of a sequence of zero-dimensional Lindel6f spaces.

Let X be the limit space of an inverse sequence (X}, fnm). In [1], we showed that
dim X can be positive even if X is normal and X, is Lindelof and zero dimensional
for each n in N, the set of natural numbers. In this paper we continue investigating
the behaviour of covering dimension under inverse limits. We generalise the con-
struction in [1] to obtain, for each k = 1,2,..., 00, an inverse sequence (X, fnm)
of zero-dimensional Lindel6f spaces with limit space X such that X is normal and
dim X = Ind X = k, where Ind denotes large inductive dimension. The space X
is, in addition, first countable, locally compact, countably paracompact and collec-
tionwise normal. Recall that a space is called N-compact if it is the inverse limit
of countable discrete spaces. Every zero-dimensional Lindelof space is N-compact,
and so is the inverse limit of N-compact spaces. It follows that X is N-compact.
N-compact spaces of positive covering dimension have previously been constructed
in [5, 6] and also [7, 8], but our space X seems to be the first example showmg that
N-compact spaces can have infinite dimension.!

In this paper, all spaces are Tychonoff. The usual metric on the Cantor set C is
denoted by d. I denotes the unit interval, w(c) the first ordinal of cardinality c, the
cardinality of the continuum, and |X| the cardinality of a set X.

For standard results in Dimension Theory we refer to [4].

1. Preliminaries. The construction of the spaces X and X, in this paper is only
slightly more complicated than that of the corresponding spaces in [1]. In both
papers, we draw from the techniques employed in [2, 7, 8]. The constructions in
(1) made use of Wage’s complete separable metric p on C which has the following
properties: (a) the p-topology is finer than the usual topology on C, (b) every p-Borel
set of C is d-Borel, and (c) every p-open set disjoint from a certain fixed p-closed
set E has boundary of cardinality c. The constructions in the present paper are
based on the existence of a separable metric e on C with the properties enumerated
in the following result.

PROPOSITION 1. For eachk =1,2,...,00, there exists a separable metric e on
C withd < e and k pairs of disjoint e-closed sets E;, F;, 1 = 1,2,...,k, such that

Received by the editors September 21, 1981.

1980 Mathematics Subject Classification. Primary 54F45, 54G20.

Key words and phrases. Normal, Lindeldf, paracompact, N-compact space, covering and induc-
tive dimension.

1The referee has informed the author that R. Engelking and E. Pol have recently constructed,
for each k € {1,2,...,00}. a Lindelf, sero-dimensional space X = X (k) such that dim X2 = k.

© 1982 American Mathematical Society
0002-9939/81/0000-0755/$02.25

648



DIMENSION OF INVERSE LIMIT SPACES 649

(1) every uncountable e-closed and every nonempty e-open subset of C has car-
dinality c.
(2) Whenever L;, 1 =1,...,k, 13 an e-partition between E; and F;, then

k
N L

=c.
i=1
(3) dim(C,e) = k.
N.B. The condition d < e implies that the e-topology is finer than the usual
topology on C.

PROOF. Let Y = C X I* and 7 =Y — C the canonical projection. Let § be
the collection of all subsets G of Y such that |7(G)] = ¢ and G is either open or
closed. Note that |G| = c and we may choose an enumeration {G,: a < w(c)} of
G such that for each G in G, G = G|, for c ordinals a < w(c). For each a < w(c),
since |m(Gq4)| = ¢, we can choose by transfinite induction, a point z, in m(G,) so
that zo 5 z for @ # (. Next, we define a function f: C — I* as follows. If
T = z, for some o < w(c), we choose f(z) so that (z, f(z)) is in G4. If not, we set
fl@)=0.

Let X be the subspace {(z, f(z)): € C} of Y. Then m: X — C is bijective
and continuous. Consider an uncountable closed set E of X. Then E = FNX for
some closed subset F' of Y. Now the closed set 7(F") of C is uncountable and hence
has cardinality c, so that F isin §. If A= {a < w(c): F = G,}, then E contains
{(za, f(za): @ € A}, and since z, # z for a # B, and |A| = ¢, we have |E| = c.
Similarly, every nonempty open subset of X has cardinality c. In fact, |GNX| =c¢
for every G in §.

Let A;, B;, i = 1,...,k, be the pairs of opposite faces of I*. Let U;, V; be open
sets of Y such that C X A; C U;, C X B; C V; and U;NV; = 0. Set E; = X NU,,
F;=XnNV, i=1,...,k, and suppose L; is a partition in X between E; and
F;. Then there exist disjoint open sets G;, H; of Y with E; C G;, F; C H; and
X —(GiUH;) C L;. Let P, =U; U(G; — V), Qi =V;U(H; —U;) and M; =
Y — (P;UQ;). Then M; is a partition in Y between C X A; and C X B; with
M;NX C L;. It follows that ﬂf=1 M; contains at least one point from {z} X I*

for each z in C. Thus |m(N5_, M;)| = ¢, which implies that

i=1
k
N L

=1

= =c.

k
A MnXx

=1

Now, by the Otto-Eilenberg characterisation of covering dimension [4, Theorem
1.7.9], dim X > k and, since X is a subspace of the k-dimensional space Y, we
have dim X = k.

Finally, to complete the proof of Proposition 1, it suffices to let, for z,y in C,
€(z, y) denote the usual Euclidean distance between the points (z, f(z)) and (y, f(¥))-

We shall need the following result, which is the analogue for the metric e on C of
the well-known theorem on the existence of Bernstein sets in a complete separable
metric space.

PROPOSITION 2. There is a partition Ay, Az, As, ... of C such that |A;NF|=c
for each t in N and each uncountable e-closed set F' of C. ‘
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PROOF. Let ¥ be the collection of all uncountable e-closed sets of C. Let
{Fa: a < w(c)} be an enumeration of ¥ such that for each F' in ¥, F = F, for
c ordinals @ < w(c). For each a, by Proposition 1, |F,| = ¢ and thus we can

choose by transfinite induction points Ta1,Za2,... in Fy 80 that zon # Tgm if
(a,n) #~ (B, m). It now suffices to let A; = {zq4i: @ < w(c)} for i = 2,3,..., and
A =C—UL, A

N.B. 1t follows from Proposition 1(1), that each A; is e-dense in C.

2. The construction. In the sequel, k£ denotes a fixed number of the set
{1,2,...,00}, e the metric on C given by Proposition 1, and Ay, A2, ... the partition
of C provided by Proposition 2.

Let {(Sa1,8a2,..-): @ < w(c)} be the collection of all sequences of countable
subsets of A; with |2, 5¢,;| = c. Since

o]
AN n gf,,;

=1

=C,

for each a < w(c), we can choose z, in A; N[, 5S¢, and a sequence {Zan} in

A; 8o that &(Za,ZTan) < %, {Zan} contains infinitely many points from each S,;,
ZTo 7 zg for a # [ and zon < To, Where < is some well-ordering on C of the
same type as w(c). Let A= {z,: a < w(c)}.

For each z in C, we construct a decreasing sequence {B,,(z): m € N} of
countable subsets of C' containing z as follows. For z ¢ A, we set Bn,(z) = {z}.
On A we define B,, by transfinite induction with respect to <] by setting for each
a < w(e),

Bp(za) = {Za} U U(Bn(:can): n > 2m).

It follows by transfinite induction that if y € B,,(z), then B,(y) C Bpn(z) for
some n in N, so that {Bn,(z): m € N} constitutes a local base of open sets at
z with respect to some first countable, locally countable topology 7 on C. It is
readily seen that B,,(z) is d-closed and has e-diameter < ;1. Hence 7 is finer than
the e-topology on C, By,(z) is 7-clopen and ind(C,7) = 0. In fact, each infinite
sequence in B,,(z) has an accumulation point in By,(z), so that B,(z) is T-compact
and (C, 7) is locally compact. In the sequel, X denotes the space (C, 7).

Next, for each 7 in N, we define a first countable topology 7; finer than the d-
topology on C by defining at each point z a local base { B, (z): m € N} consisting of
a decreasing sequence of d-closed sets containing z as follows. If z is in U;.”;i +145
we let {B%,(z): m € N} be a decreasing sequence of d-clopen sets of C forming a
local d-base at z. Otherwise, we let B, (z) = By,(z). Clearly, ind(C,7) = 0. In
the sequel, X; stands for the space (C, 7). It is readily verified that (X, f;;), where
fij: Xj — X; is the identity mapping, ¢ < 7, constitutes an inverse limit sequence
with limit space X.

The short proof of the following result is almost identical with the proof of Claim
1 of [1]. We give it here for completeness.

Claim 1. For each 7 in N, X; is a Lindelof space with dim X; = 0.

PROOF. Since every open set of X; containing a point of A;4; is a d-open
neighbourhood of that point, for any open cover U of X;, we can choose d-open
sets Gy, n in N, such that each G, is contained in some member of U and A; 1 C
G = U5, Gn. Since X;—G is an e-closed set of C which does not intersect 4,1,

n=1
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it follows from Proposition 2 that X; — G is countable. This clearly implies that
X; is Lindelof and hence, since ind X; = 0, dim X; = 0.

Claim 2. X is normal, countably paracompact and collectionwise normal.

PROOF. Since X — A, is a clopen discrete subspace of X, it suffices to show
that A; is normal, countably paracompact and collectionwise normal. Note that if
By, B, ... are closed subsets of A; with (1> ; B; = 0, then 2, B¢ is countable.
For suppose that ;2 , B¢ is uncountable and hence has cardmahty c. For each
iin N, let S; be a countable e-dense subset of B;. Then for some a < w(c),
(81,82, -..) = (Sa1; Saz, ---) so that, by the definition of the topology 7, z, is an
accumulation point of each S;. Hence z, € (;—, Bi, a contradiction.

Let E, F be disjoint closed sets of A;. Then A; NE°NF* is a countable zero set
of A; and, using the fact that A; is locally countable, we can construct a countable
cozero set Z of A; containing it. Let P be a cozero and Q a zero set of A; with
ANE‘NF CPCQC Z. Since ind X = 0, then ind Z < 0 and, since Z is
countable and therefore Lindelof, we have dim Z < 0. Hence there exists a clopen
set Y of Z such that Ay NE°NF¢ CY C P. Clearly, Y is a closed subset of Q,
and thus Y is a countable clopen subset of A;. Now Y is Lindelof and therefore
normal, and hence there exist disjoint open subsets G, H; of Y with ENY C Gy
and FNY C H,. Also, there exist disjoint e-open subsets G3, Hy of A; —
with A; NE¢—Y C G2 and Ay NF° —Y C H;. Finally, G = G; UG; and
H = H; U H, are disjoint open subsets of A; with E C G and F C H. Thus 4,
is normal.

Let {B;: ¢ € N} be a decreasing sequence of closed sets of A; with ﬂ,_l B;=0.
A; is countably paracompact if there exists a decreasing sequence {W;: 1 € N} of
open sets of A; with B; C W; and (o, W; = 0 [3, Corollary 5.2.2]. Now B =
A;NNZ, B¢ is a countable subset of the locally countable space A; and hence it is
contained in a countable open set Y = {y1, ¥z, ...} of A;, where y; 5 y; for ¢ 5 j.
We may assume B;N\B C {¥i, Yi+1, - .- }- Let {Gi: ¢ € N} be a decreasing sequence
of e-open sets of A; — B such that A1 NB¢ — B C G; and (2, Gi = 0, and put
W; = GiU {¥i,¥i+1, ... }- Then (W;: 71 € N } is a decreasing sequence of open sets
of A; with B; C W; and ;2 ; W; = 0. Hence A, is countably paracompact.

To prove that the normal space A; is collectionwise normal, it suffices to show
that every discrete closed subset B of A, is countable. Suppose the contrary, and
let S be a countable e-dense subset of B. Then |S¢| = ¢ and, for some a < w(c),
(S,S,...) =(Sa1,Sa2, ---), 8o that, by the definition of 7, z, is an accumulation
point of B, contradicting the fact that B is discrete. This concludes the proof of
Claim 2.

Claim 3. dimX =Ind X = k.

PROOF. Let E;, F;, 1 = 1,...,k, be the e-closed sets of X occurring in
Proposition 1. For each ¢, let U;, V; be e-open sets of X with E; C U;, F; C V; and
U:NV¢ =0, and suppose a closed subset L; of A, is a partition between U¢ and
V¢, Write L; = M; N N; where M;, N; are closed sets of A; with U$ N\ N; = 0,
Vf N M; = 0 and A; = M; U N;. Then it follows from the fact that A; is e-dense
in X that M¢ N N¢ is an e-partition between E; and F;. Hence, by Proposition 1,
INE_, M ﬂN‘I = ¢, which implies that ﬂ,_l M;NN; =NE_, L; # 0. Now by
the Eﬂenberg-Otbon characterisation of covering dimension we have dim X > k.
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Consider next a closed subset A of A; with dim(A,e) < n. Let E, F' be disjoint
closed subsets of A. Then B = E° N F°N A is countable and hence is contained
in a countable open set Y of A. Clearly, dimY < 0 and hence, since also A is
normal, there is a clopen set Z of A with B C Z C Y. Also, there are disjoint
open sets P,Q of Z suchthat ENZ C P, FNZ C @ and Z = PUQ. Now
Ind(A— Z,e) < Ind(A, e) < n, and so there are disjoint e-open sets U,V of A—Z
such that ANE*—Z C U, ANF*—Z C V andInd(A—(UUVUZ),e) < n—1.
Then G = UUP, H =V UQ are disjoint open sets of A with E C G, FF C H and
Ind(A—(GUH),e) < n—1. It follows by induction that Ind A < n. In particular,
Ind A; < Ind(C,€) = k and hence, since the discrete space X — A, is clopen in X,
Ind X < k. Hence, in view of the inequality dim < Ind, which holds for all normal
spaces, we have dim X = Ind X = k.
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