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SIGMA-COMPACT LOCALLY CONVEX METRIC LINEAR SPACES

UNIVERSAL FOR COMPACTA ARE HOMEOMORPHIC

T. DOBROWOLSKI AND J. MOGILSKI

ABSTRACT. It is proved that every u-compact locally convex metric linear

space containing a topological copy of the Hubert cube Q is homeomorphic to

£ the linear span of the Hubert cube Q, in the Hubert space ¿2-

Let us fix the following representation of the Hubert cube Q in the Hilbert space

Q = {(xn) G h- |xn| < n   2 for every n).

Consider the space E — span(Q) C l2- We note that E is a cr-compact linear dense

subspace of l2. The purpose of this note is to prove the following fact:

THEOREM. Every o-compact locally convex metric linear space E containing a

topological copy of the Hilbert cube Q is homeomorphic to E. Moreover, if E is the

completion of E, then the pairs (E, E) and (l2, E) are homeomorphic.

The Theorem resolves the outstanding problem LS3 in [4] posed by Anderson

in connection with the fact that the assertion of the Theorem was known to be

true under the additional assumption that the copy of the Hilbert cube above was

a convex set (see: Anderson [1], Bessaga-Pelczynski [2] and Torunczyk [5]). Let

us recall that the classical theorem of Keller-Klee [3, p. 100] states that every

metrizable infinite-dimensional compact convex subset K of a locally convex space is

homeomorphic to Q. We complete the paper with an example of a a-compact dense

linear subspace of l2 which contains a topological copy of Q and does not contain

any infinite-dimensional compact convex subset. This shows that the Theorem

cannot be reduced to the above-mentioned result of [1, 2, 5].

The proof of the Theorem involves the technique of absorbing sets. We will use

the approach of West [8] and Torunczyk [6] instead of the original approaches of

Anderson (cap-set technique [1]) and Bessaga-Pelczynski (skeleton technique [2]).

According to [8, 6] a «7-compact set M is an absorbing set (for compacta) in a space

X homeomorphic to l2 if the following condition is satisfied:

(abs) every map f:Q—>X such that f\B is an embedding of a closed set B C Q

into M C X can be approximated by embeddings g: Q —» M with g\B = f\B.
The space E may serve as an example of an absorbing set in l2 (see [3, p. 275]).

We intend to show that the space E is also an absorbing set in the completion

E homeomorphic, by the Kadec-Anderson theorem [3, p. 189], to l2. Then the

assertion of our Theorem will follow from the theorem on equivalence of absorbing

sets [8, 6] stating that: if M¿ is an absorbing set in X¿ (i = 1,2), then the pairs

(Xi, A7i) and (X2, M2) are homeomorphic.
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The verification of the condition (abs) makes use of the Proposition below. We

shall assume that | • | is an P-norm on a locally convex space E, i.e., a function

| • |: E —► [0, oo) such that (x, y) —► |x — y\ defines a compatible metric on E. We

shall additionally require that each ball

TV(t?) = {x G E: \x\ < n}

is convex. We shall often write, for ¡p, rp: Y —► E

\<p — V| = s\ip{\<p(y) - 4>(y)\: y G Y}.

The symbol 77(Y) denotes the space of all self-homeomorphisms of Y.

PROPOSITION.  Let (E, | • |) be an infinite-dimensional locally convex space and

let B and A be disjoint compacta of E.  Then, given a map f:B—*E and e > 0,

there exists a homeomorphism h G H(E) satisfying

{i)\h-id\<\f-idB\+e;
{ii)h\A=idA;
(iii) \h\B_/I < e

LEMMA 1. Assuming that span(B U /(B)) is finite-dimensional and that f is an

embedding with f(B) (~) A = 0, there exists h G H(E) extending f and satisfying the

conditions (i) and (ii) of the Proposition.

LEMMA 2.   Given a positive 6, there exists a map

u:EX[0,l)UBX{l}^E

such that, writing ut = u(-,t), we have Ui(B) D A = 0, span(ui(B)) is finite-

dimensional and, for f < 1,

(iv) ut G H(E) with un = id;

(v) \ut — id | < 6;
(vi) ut|A = id^.

PROOF OF LEMMA 1. Pick a positive r¡ with n < dist(A,BU/(B)) and r\ < e.

The compactness of A implies that there is a finite-dimensional linear subspace E'

of E satisfying

(1) AGE'-r- N(r) /16)

and such that Pi = span(PU/(P)) C E' and dim(P') > 2-dim(Pi) + 3. Consider

the set N(n/2)\(E' + TV(r?/4)) = C. If G ?¿ 0, pick a point x0 g E' + N(r)/A) to
have

(2) |x0| < n/2.

Otherwise, there exists a point in G E\E' such that

(2') |sx0| < T7/2   for every s > 0.

In either case, let Pn — span(P', {xo}). By a theorem of Michael [3, p. 85], there

exists a continuous right inverse <p: E/E0 —*■ E for the quotient map k: E —* P/Pn;

by the local convexity of E we may additionally require that

(3) \<p(k(x))\ < 2|x|    for all x G E.
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Writing r(x) = x — <p(k.(x)), by (1) and (3), we have

(4) r(A)cA + TV(r7/8).

The formula

!b + tx0,     te [o,i],
(2-í).(0 + xo) + (í-l).(/(6) + x0),        te [1,2],

/(6) + (3-t)x0)        te [2,3],

defines a homotopy a joining ids with / in P0. By (2), we have

(5) \at(b) -b\< n/2 + \f(b) - b\ + Vf2 < e + \f(b) - 6|

for every b G B. Moreover, by (4), (2) or (2') we get

(6) a(bX [O,3])f1r(A) = 0.

(In the case where G = 0, in the formula describing a, we put instead of x0,

the point sxq in order to have (sxn -+- P') 1*1 r(A) = 0.) The space Pn has the es-

timated extension homeomorphism property for compacta K with dim(span(7C)) <

dim(Pi) -f-1 (we apply, for instance, the "graph-trick" of Klee [3, p. 62]; see also

[4, p. 11]. Consequently, there exists a homeomorphism h G H(Eq) with h\B = f

satisfying, by (5),

\h — id | < e + |/ — idB |

and such that, by (6), /i|r(A) = idr(.A). Finally, we put h(x) = (p(tz(x)) -\- h(r(x))

for x G P.

PROOF OF Lemma 2. Assume that 6 < dist(A,B) and consider a finite-

dimensional linear space P0 C P with

(7) AUPCPo + 7V(6/4).

Let tp: P/Po —► E be a map of the proof of Lemma 1 (i.e. >p satisfies the condition

(3)). Write ho(x) = (k(x), r(x)) for the homeomorphism of P onto P/Pn X Po with

r(x) = x — ip(k(x)). Let | • | be the quotient P-norm on P/Pn = Y. By (7), we

have r(A) fl r(B) = 0. Let w: P0 -* [0,6/4] be a map with

MB) C {(y, e) G Y X P0: |y|< w(e)} C h0(E\A).

Let {0 < at < 1}, 0 < t < 1, be a homotopy of [0, oo] with oto — 1> <Xt is monotone

and at|[l, oo] = 1 for each t and such that for each s < 1, limt_i at(s) = 0. Define

an isotopy {gt}, 0 < t < 1, of Y X Po by the formula

,     v      f(<*t{\v\/w{e))-V,e),    i
9t(y,e) = \

\(0,e),    \fy = 0.

ïy ^ 0,

Then the desired map u may be defined by u(x, t) = h0~1gtho(x) for 0 < t < 1,

and u(b, 1) = r(b) for b G B.

PROOF OF PROPOSITION. (1) Assume span(B U f(B)) = Pi is finite-

dimensional. One can easily approximate / by maps with ranges disjoint from

A. Thus, we will require that f(B) flA = 0. Since B is finite-dimensional, there

exists an embedding w: B —► P with |tt>(6)| < 6 and such that P2 = span(u;(P)) is

finite-dimensional with P2 fl Pi = {0}. Writing v = f + w, we see that v is an
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embedding satisfying

(8) |«-idB|< |/ —id| + «   and   \v — f\<6.

If 6 is sufficiently small, we also get

(9) v(B)nA = 9.

Assuming 6 < e and applying Lemma 1, we extend the embedding v to a required

homeomorphism h.

(2) The general case. Let /: P —► P be a map with f\B = f (we use the

AR-property of P). Pick 6 with 0 < 6 < e/8 and such that

(10) 6 GB,        \x — b\<6   implies \f(x) - f(b)\ < e/4.

With this 6, consider a homotopy ut of Lemma 2 and write B' = ui(B). Let us

approximate /IB7 by /': ff -A E such that

(11) \J\Bf - /'| < e/4   and    dim(span(/'(P/))) < oo.

Now, observing that the triple (B', A, /') satisfies the assumptions of the previous

case, we conclude that there exists h' G H(E) satisfying \h'\B' — f'\  <  e/4,

\h' — id | < |/' — ids' | + e/4 and h'\A = id^- We claim that ht = hf o ut may
serve as a required homeomorphism, provided that t ^ 1 is sufficiently close to 1.

First observe that for b1 = ui(b) G B', we can estimate, using (11), (v) and (10),

im - y\ < irm - mi + \j¡^ - m\ + m - b¡
+ \b- ui(b)\ < e/4 + e/4 + \f - idB | + e/8.

Consequently, by (v), for all f < 1, we have

\ht — id\<\h'out- ut| + \ut — id| < \h' — id| + e/8

<5e/8 + |/-idB| + e/4 + e/8<|/-idB| + e.

Now, we take to G (0,1) such that for every t > to we have

(12) \h'(ut(b)) — h'(ui(b))\ < e/4   for all 6 G B.

Using (12)-(10), for t G [to, 1), we have

Mb) - f(b)\ = \h'ut(b) - f(b)\ < \h'ut(b) - h'ui(b)\

+ \h'ui(b) - f'm(b)\ + \f'(ui(b)) - f(Ui(b))\

+ \?ui(b) - f(b)\ < e/4 + e/4 + e/4 + e/4.

Finally, since both h' and ut are the identity on A, the composition ht = h' o ut

has this property also.

PROOF OF Theorem. By what was said in the Introduction we have to verify

the condition (abs) for the pair (X, M) = (P, P). Since the set P\P is locally

homotopy negligible in P (see [7, Remark 2.9 and Theorem 2.4]), the map f:Q-+

E can be approximated by maps which are equal to / on B and have ranges in P.

Using our hypothesis, we may assume that the Hilbert cube is placed in the space

P; possibly with Q n f(Q) = 0-
Fix a positive e. Consider a tower {A¿}?Lo consisting of compacta, with Ao =

0 and UiLo -^ = QX&- We shall inductively construct a sequence of homeomor-

phisms {/i„}£*L0 C H(E) such that, writing gn = hnohn—io- --oho, the following
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conditions are satisfied:

(13) \gn — gn-i\ < 2_n+1e

and

(14) ffn|A„_i =gn_i|An_i    forn = 1,2,...;

(15) |3n|B-/|B|<2-n-1e

and

(16) 9n\f(Q) = id    forn = 0,1,2,....

Let ho be a homeomorphism obtained by the Proposition applied to the quadruple

(Q) fi f(Q)> e/2)- Assume h0,..., /in—i (n > 1) are already constructed. To get hn,

apply the Proposition to the quadruple (gn-i(B),f o g^i1|gn_i(P),í/n_i(An) lj

f(Q), 2~n~1e). Then (13) is a consequence of the calculation

\9n - gn-i\ = \hn - id |< |/ o g-l^-xiB) - idgn_l(B) I + 2-"-1e

< \f\B — g„_i|B|+2-n-1e < 2-ne + 2-n~1e < 2-n+1e.

The conditions (14)-(16) also follow.

Now, put g(q) = lim^n(ç) for q £ Q. By (13)-(15), g is a continuous map from

Q into P such that g\B = f\B and \g — f\ < 3e. Finally, by (14) and (16), g is a
1-1 map (and therefore an embedding of Q into P).

EXAMPLE. Let i: Q —* l2 be an embedding of the Hilbert cube Q into the

Hubert space l2 such that the set Q' = i(Q) is linearly independent (see [3, p.

193] and the Note below). Let E = span(Q') C h- Since P can be expressed

& = UT=i A», with Ar, = {£fc=i i* • q'k: \tk\ < n, «t € Q'}, E is ^-compact. The
space P does not contain any infinite-dimensional compact convex subset.

PROOF. First, we verify that every convex subset G contained in A„ has

dimension < n. Let m be the maximal integer such that there is c = l~)£Li tfc-Çfc G

G with tk 7¿ 0. We claim that G C span^ç',,..., q'm}). If there were c0 £ C such

that Co = Er=i sk ■ Q'k + T,k=m+i sk ■ Q'k ™th s* 7e 0 for fc = m + 1,..., i, then
we would find a suitable t G (0,1) such that the point tc -f- (1 — t)co G G would

have all / coordinates different from 0. This contradicts the maximality of to.

Now, assuming that E contains an infinite-dimensional compact convex subset,

by a Baire category argument, there is A„0 which also contains such a subset.

However, by the above argument, this is impossible.

Note. Let P be a locally convex metric space containing an infinite-dimensional

compact convex set G. Then, P contains a dense cr-compact linear subspace Po

such that: (a) P0 contains a topological copy of the Hilbert cube; and (b) Po does

not contain any infinite-dimensional compact convex subset. This is a consequence

of the fact that there exists an embedding of Q onto a linearly independent subset

C of C with cl(span(G')) D span(G). (To see this, consider G as a subset of l2 with

0 G G (use [3, p. 100]) and take an orthogonal set {ei}*^ C G which is total for

span(G). The formula (x„) -* X)£°=i Y^Li xn ' en(k), where {n(k): k = 1,2,...} is

a partition of the integers into countable sets, defines a required embedding.

The authors are grateful to W. Smolenski who pointed out that the space E of

the example does not contain any infinite-dimensional compact convex subset.
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