THE SPACES WHICH CONTAIN AN S-SPACE

W. F. PFEFFER

ABSTRACT. Under the continuum hypothesis, we show that a T_1 -space X contains an S-space if and only if there is an uncountable locally countable set $E \subset X$ containing no Borel subset of X.

All spaces in this note are T_1 . A space X is called locally countable if each point has a countable neighborhood. A set $E \subset X$ is called locally countable if it is such as a subspace. An S-space is a hereditarily separable space which is not Lindelöf. We remark that contrary to the usual definition, in this note an S-space is not required to be regular. If X is a space, we denote by B(X) the family of all Borel subsets of X, i.e., the σ -algebra in X generated by the topology of X. If A is a set, we denote by |A| its cardinality.

The Zermelo-Fraenkel set theory including the axiom of choice, the continuum hypothesis, and Martin's axiom will be abbreviated as ZFC, CH, and MA, respectively.

1. DEFINITION. A space X is called *ample* if each uncountable locally countable set $E \subset X$ contains an uncountable subset $B \in \mathcal{B}(X)$.

In this definition the word "ample" is used to indicate a certain richness of the Borel structure of X. The ample spaces are important in the topological measure theory; for each diffused, regular, Radon measure in an ample space is σ -finite (see [GP, 2.4]). Thus it appears useful to characterize the ample spaces in terms of much studied S-spaces.

The following lemma was first proved by R. J. Gardner (see [GP, 2.5]).

2. LEMMA. Let $E \subset X$ be a locally countable set containing no uncountable subset $B \in \mathcal{B}(X)$. Then E is hereditarily separable.

PROOF. It suffices to show that E is separable. By Zorn's lemma there is a maximal disjoint family \mathcal{D} of nonempty countable subsets of E which are open in E. By the maximality of \mathcal{D} , $\bigcup \mathcal{D}$ is dense in E. For each $D \in \mathcal{D}$, choose an $x_D \in D$, and let $B = \{x_D : D \in \mathcal{D}\}$. Then $B \in \mathcal{B}(X)$; for B is discrete. By our assumption B is countable, and hence so are \mathcal{D} and $\bigcup \mathcal{D}$.

3. COROLLARY. If X is not ample, then it contains an S-space.

The following lemma is a special case of Theorem 2.6(i) from [J, p. 12].

4. LEMMA. Let X be not Lindelöf. Then there is a locally countable $Y \subset X$ such that Y is not Lindelöf and $|Y| = \omega_1$.

Received by the editors November 4, 1981 and, in revised form, January 19,1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54D20; Secondary 28A05.

Key words and phrases. Separable, Lindelöf, locally countable, Borel set, continuum hypothesis, Martin's axiom.

- PROOF. Let \mathcal{U} be an open cover of X which has no countable subcover. Then we can find a collection $\{U_{\alpha} \colon \alpha < \omega_1\} \subset \mathcal{U}$ where each $U_{\beta} \bigcup_{\alpha < \beta} U_{\alpha} \neq \emptyset$. For every $\beta < \omega_1$, choose an $x_{\beta} \in U_{\beta} \bigcup_{\alpha < \beta} U_{\alpha}$. The set $Y = \{x_{\beta} \colon \beta < \omega_1\}$ has the desired properties.
- 5. LEMMA. Let Y be a hereditarily separable space with $|Y|=2^{\omega}$. Then there is an uncountable set $E \subset Y$ which contains no subset $B \in \mathcal{B}(Y)$ with $|B|=2^{\omega}$.
- PROOF. Let \mathcal{X} be the family of all sets $B \in \mathcal{B}(Y)$ with $|B| = 2^{\omega}$. Since Y is hereditarily separable, it contains at most $|Y|^{\omega} = 2^{\omega}$ closed subsets. Since Y is a T_1 -space, $|\mathcal{X}| = 2^{\omega}$. Now it is easy to construct a set E with $|E| = 2^{\omega}$ which contains no element of \mathcal{X} (for the details see [K, §40, I, Theorem 2]).
 - 6. THEOREM (CH). A space X is ample if and only if it contains no S-space.
- PROOF. If X contains an S-space, then by Lemma 4, it also contains a locally countable S-space $Y \subset X$ with $|Y| = 2^{\omega}$. It follows from Lemma 5 that Y, and consequently X, is not ample. The converse is given by Corollary 3.

The following example shows that Theorem 6 cannot be proved without CH.

7. EXAMPLE. By an unpublished result of Szentmiklóssy there is a model M of ZFC+MA+¬CH in which a regular S-space exists. It follows from Lemma 4 that in M there is a regular S-space Y with $|Y| = \omega_1$. By [MS] (the lemma following Theorem 2 in §2), in M there exists a subspace X of real numbers such that each subset of X is Borel, and $|X| = \omega_1$. Choose a bijection $f: Y \to X$, and let τ be the weakest topology in Y which refines the given topology of Y, and for which f is continuous. Then each subset of (Y, τ) is Borel, and hence (Y, τ) is ample. However, since X is second countable it is easy to see that (Y, τ) is still a regular S-space.

The author is obliged to the referee for valuable comments and suggestions.

REFERENCES

- [GP] R. J. Gardner and W. F. Pfeffer, Are diffused, regular, Radon measures σ-finite, J. London Math. Soc. 20 (1979), 485–494.
 - [J] I. Juhass, Cardinal functions in topology, Math. Centre Tracts 34, Math. Centrum, Amsterdam, 1971.
- [K] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [MS] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616

Current address: Department 'Mathematics, University of Petroleum and Minerals, Dhahran, Saudi Arabia