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HOMEOMORPHISM GROUPS OF SOME DIRECT LIMIT SPACES

MARGIE HALE

Abstract. Let F be either of the spaces fi°° = limn" or Q°° = limQn

where R denotes the reals and Q the Hilbert cube. Let M(M) be the homeomor-

phism group of a connected F-manifold M with the compact-open topology.

We prove that )i(M) is separable, Lindelöf, paracompact, non-first-countable,

and not a fc-space.

Let R denote the reals and Q the Hilbert cube. Let P denote either of R°° =

limP" or Q°° = limQn. It is known that P is paracompact [7, ULI] but not

first countable [6, p. 391], hence not metrizable. By an P-manifold we mean a

paracompact space which is locally homeomorphic to P.

Work by Heisey and Liem shows that the behavior of P-manifolds is similar to

that of metrizable, infinite dimensional manifolds. Let l2 denote separable, infinite

dimensional Hilbert space. Just as for ¿2-manifolds, P-manifolds are triangulable,

stable on multiplication by the model, and classified by homotopy type; also,

each connected P-manifold embeds as an open subset of P (see Heisey [8 and 9]).

Recently, a-approximation theorems [10,12] and unknotting theorems [11,12] have

been achieved for P-manifolds, similar to those for Q-manifolds.

For any space X, let X(X) denote the space of all homeomorphisms of X onto

itself with the compact^open topology. H(X) is a group under composition of

functions, though not necessarily a topological group. In the metrizable case, Renz

[13] has shown that X(l2) and M(Q) are contractible. (Recall that h^UT R W-)
Further, a theorem completed by Ferry [3] states that the homeomorphism group

of a compact Q-manifold is an ^-manifold.

The problem we address here is the nature of the homeomorphism group of an

P-manifold M. In [6] Heisey proved that M(F) is contractible. Previous work [4]

by the author shows that U(M) is P-stable; that is, X(M) X F=X(M). As noted

above, stability is a property shared by P-manifolds. In this paper we show that,

also like M, U(M) is separable, Lindelöf, paracompact, and non-first-countable.

However, we also show that U(M) is not a fc-space, and hence not an P-manifold.

The author would like to thank her thesis advisor, Richard Heisey, for his advice

and support during the course of this work.

Call a space X weakly second countable if there is a countable collection D =

{Dk\k = 1,2, ... } of subsets of X, not necessarily open, such that for each x G X

and each open set U of X containing x there is an integer k such that x G D^ C U.
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Clearly each second countable space is weakly second countable, as well as any

countable union of second countable spaces. Thus, P is weakly second countable,

but not second countable.

PROPOSITION 1.  A weakly second countable space is separable and Lindelöf.

The proof of Proposition 1 follows the proofs for second countabilhy [2, VHI,

6.3, 7.3].
A space X is a countable direct limit of compact metric spaces (CDLCMS) if

X = limCn, where each C„ is a compact metric subspace of Cn-i-i- Examples are

Rn, F, and any connected P-manifold [7, ILT.2]. Since a CDLCMS is Hausdorff and

regular [5, 4.1, 4.3] we have

PROPOSITION 2 [5, 1.1]. 7/X is a CDLCMS, then )/(X) is Hausdorff and regular.

NOTATION. The identity map on a space X will be denoted by idx- If A, B C

X, then (A, B) = {h G U(X)\h(A) C B}. The closure of A in X is written clx(A).

THEOREM 1.  7/X is a CDLCMS, then )i(X) is weakly second countable.

THEOREM 2. 7/X is a CDLCMS, then U(X) is separable, Lindelöf, and paracom-

pact.

REMARK. Theorems 1 and 2 apply to spaces X which are connected P-

manifolds, as noted above.

Theorem 2 follows easily from Theorem 1 by applying Propositions 1 and 2 and

[2, VUL 6.5].
PROOF OF Theorem 1. Write X — UmCn as in the definition of CDLCMS.

Choose a countable collection D = {Dk\k = 1,2, ...} of subsets of X satisfying

(i) Each Dk is a compact neighborhood in some C„;

(ii) D contains a (compact) basis for each Cn.

Let / G (K, W) C X(X), where K is compact and W is open. (Thus (K, W) is

a typical subbasic open set in X(X).) By [5, 2.4] there are integers m, n such that

K C C„ and f(Cn) C Cm. Now, K C /"^(Vr7) n C„, which is open in C„, so

there is a finite set M of integers such that

kg U^cr'Wnc«.
fc6M

By similar reasoning, there is a finite set TV of integers such that

f( U Dk)C [JDtcwnCm.
\-keM        ' IÇN

Thus, / G (UeM^-lW Dt) C (K,W).
Now, let U C H(X) be an arbitrary open set containing /. Then there is some

basic open set 0 = rii=i(7fi, W¿) such that / G 0 C U. As above, for each i,

there are finite sets Aí¿ and Ni of integers such that

n ( u d* u di
i=i \keMi       leNi

/efll U D*> U d,\cocu.

But the collection of all possible sets of this form is countable, and the theorem is

proved.
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We now turn to two further theorems. As before, M denotes an P-manifold (not

necessarily connected).

THEOREM 3.   U(M) is not first countable.

Theorem 4.  H(M) is not a k-space.

Note that R°° is a factor of M [9, Theorem 1, 8, Theorem 7]. We prove Theorems

3 and 4 for the special case M = R°° (Theorems 5 and 6 below). The general case

then follows from the following

PROPOSITION 3. For Hausdorff spaces X andY, the maptp: M(X) -* #(XXY)
defined by <p(h) = /iX idy is a closed embedding.

The proof of Proposition 3 is routine and will be omitted.

Theorem 5.  H(R°°) is not first countable.

PROOF. Let C = {(Ki, Wi)\i = 1,2, ...} be any countable collection of subbasic

neighborhoods of id^» in M(R°°). It will suffice to show that there is a neighborhood

U of 0 = (0,0, ... ) G R°° such that no finite intersection C\í=i(Hí, W¿) is contained

in({0},CT).

Since P°° is separable and locally path-connected, the collection P of all path

components of all sets of the form

m

J'-l

or

where m and r take on all integer values, is countable. Since R°° is not first

countable, P does not form a basis for R°° at 0, and hence there is a neighborhood

U of 0 such that if 0 G P and P G P, then P £ U.
Let n be given. We must show that f)7=i(Ki>Wu £ (i°}>u)- The argument

breaks down into three cases, all handled similarly.

Case (i): 0 G ULi Ki- Set v = R°° —(tX=i Kù- Let p be the Path component
of V containing 0. SoPgP and there is a point y G P — U. The map taking 0

to y is an embedding into 7?°° homotopic to inclusion. Using Lemma 3.1 of [12] we

extend to a homeomorphism h of R°°, fixed outside P, and taking 0 to y. Then

he[[X=i(Ki,Wi)}-({0},U).
Case (ii): 0 G Dr=i 7£¿- Set V = n"=i Wt and repeat the arguments of Case (i).

Case (iii): 0 G (f)T=i «"<) " (UU+i Hi), l<m<n.SetV = (f]Zi WÍ) -
(Ur=m+i ^*) an(^ rePeat tfle preceding argument.

Thus the proof is complete.

THEOREM 6.   X(R°°) is not a k-space.

PROOF. Consider R°° as a topological vector space with basis S = {en\n =

1,2, ...}, where en = (0,.. .,0,1,0, ...), 1 in the nth component.   Let L(R°°)
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denote the space of all linear maps of R°° into itself, with the compact-open

topology. Define LH(R°°) = L(R°°) D )i(R°°).
It is easy to see that the map ip: L(R°°) -► UT R°° defined by xp(f) = (f(ei),

f(e2), ... ) is a homeomorphism taking L)l(R°°) onto the subset

Y = {(xi, x2, ... )\{xi,x2, ...} C R°° is a basis}.

Now, LH(R°°) is a closed subspace of X(R°°), so in order to prove Theorem 6 it

suffices to prove that Di(R°°), or Y, is not a fc-space.

We construct a set A in Y whose intersection with every compact set is closed,

but which is not itself closed. This construction is similar to [6, LT-l(b)].

Let e = (ei,e2, ...)£Y. For positive integers r and j, define

xi = -ej = (o,...,0,-,0,0, ...)gP°°.
r \ r J

For j > 2, define Aj C Y by

Aj = \(ei + x{,e2,... ,ej-X,ej + ek,ej+i, ...) G JJi?°°jfc > 2,r < k\.

We show that indeed Aj C Y. Let j, k > 2 and r < k be given. Of the elements

ei + x{, e2,..., Cj—i.Cji + ek, e.+i,...,

for m G {l,7>fc}> em is the only one whose mth component is nonzero.  Thus it

suffices to show that the remaining elements form a linearly independent set, and

that all the elements span P°°.

Case (i): j 7^ k. Assume

0 = X!(ei + 4) + X2(e, + ek) + X3efc

= (Xi,0,...,0,X2 + Xi/r,0,...,0,X2 + X3,0, ...).

Then X¿ = 0 for 1 < i < 3, and the set is linearly independent.

Let x = (xi, x2, ... ) = ¿\^Li XiCi G R°°■ It is routine to verify that

i = ii(ei +xi) + (xj — — j(ej+ek) + (xk — x} + — )efc +   ^   ije,.

iï&i.,j,k

Case (ii): j = k.lîO = \i(ei+xi) + M2ej) = (\i,0,...,0,\i/r + 2\2,0,...),
then Xi = 0 = X2, so the set is linearly independent.

Again, one can easily check that

00 -

J2 Xid = xi(ei + x{) + -(x, — y)(2ej) -f- ^ x¿e¿.

Thus each Aj C Y and we define A = \Jj*L2 Aj C Y. This is the set we desired.

If C C Y is compact, then C C Ü^Li^S wr some integers n¿ [5, 2.4]. We

show that A n (1110 -R"*) is empty or finite. Thus A n C will be empty or finite,

and hence closed in C.

For a given integer j, if Aj meets fl™ Rni, then ei + 1^ G Pni, for some r.

Hence 7 < m, and only finitely many of the sets Aj meet ]\f Rni. Fix j between
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2 and n-i and suppose

(ei -f xi, e2,..., ej_i, ej -f- ek, tj+u • • • ) G A.,n(nñni)

Then ej -f- ek G P™5, so A < n,-, and there are only finitely many choices for k.

By definition of Aj, r < k, so there are only finitely many choices for r. That is,

AjDdir^"') is finite.
It remains to show that A is not closed in Y. We show that e G cly(A) — A.

Clearly e G A, since x\ is never 0. Choose a basic neighborhood of e in Y. We may

assume this neighborhood is of the form V = [Il"=i(e» + U) X U.n°+i R°°] H Y,

where {7 = (I1í~ i Ui)nR°° and t7¡ is a neighborhood of 0 in R [6, LT-l(a)]. Choose
r > 2 such that 1/r G Un+i- Then the point

(ei + xn+1,e2, •. •, en, en+i + er, en+2, ... )

is in An-i-i nV. So e G cly(A).
Thus Theorem 6 is proved.
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