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GRAPHS WITH SUBCONSTITUENTS CONTAINING L3(p)

RICHARD WEISS

Abstract. Let T be a finite connected undirected graph, G a vertex-transitive

subgroup of aut(T), {x, y) an edge of T and G,(x, y) the subgroup of G fixing every

vertex at a distance of at most i from x or y. We show that if the stabilizer Gx

contains a normal subgroup inducing L}(p), p a prime, on the set of vertices

adjacent to x, then G5(x, y) = 1.

Let T be an undirected graph with vertex set V(T) and edge set E(T) and let G be

a subgroup of aut(T). For each x G V(F), we denote by T(x) the set of vertices

adjacent to x, by G(x) the stabilizer of x in G and, for each / G N, by G¡(x) the

subgroup {a G G(x) | a G G(u) for all u G V(T) with 3(x, «) «s i) where 9(x, u)

denotes the distance between x and u. An s-path (for 5 G N) is an (j + l)-tuple

(xQ,...,xs) of vertices such that x, G iX*,^,) for 1 < i < í and x/#xj_2 for

2<i<*. Let GO0,...,je,) = G(x0)n ••• n (?(*,) and G,(x0,.. .,*,) = G,(x0)

n • • • n G^Xj) for each s-path (x0, ...,xs) and each i G N.

If P is a group acting on a set X a an element of P, we denote by Hx the

permutation group induced by H on X and by a* the permutation dfX induced by

a. In the above context, the permutation group G(x)r(-x) (for x G V(T)) is known as

the subconstituent of G at x.

We prove the following

Theorem. Let p be an arbitrary prime. Let T be a finite undirected connected graph,

{x, y) an edge of T and G a subgroup of aut(T) acting transitively on V(T) such that

G(x)r(x) > L3(p) (where L3(p) is to be understood as acting on the 1 + p + p2 points

of the associated projective plane). Let s be the largest integer such that G acts

transitively on the set of all s-paths in T. Then 2 < s < 3, G3(x, y) = 1 if s = 2 and

G5(x,y)=lifs = 3.

Let T be an arbitrary finite undirected connected graph, {x, y) an arbitrary edge

of T and G a subgroup of aut(T) acting transitively on V(T) such that G(x)T(x) is

primitive. In [6, 7], Tutte showed that | G(x) | is bounded (in fact, that | G(x) \

divides 48) if | T(x)|= 3. Our Theorem may be seen as a step in the efforts to

generalize this result to graphs of arbitrary valency. By [2,(2.3)], | Gx(x, y) \ is in

general a power of some prime. From this fact it follows easily that Gx(x, y) = 1 or

that G(x, y)T(x) has a nontrivial normal subgroup of prime power order. This directs
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attention (in particular) to the case that G(x)r(x) }>L„(q). The case n = 2 was

solved (i.e. a bound found for | G(x) | depending only on q) in [3, 4]; see also [10].

The case n > 3 has proved more stubborn. A partial result was proved in [9]. See p.

214 of that paper for a discussion of examples associated with the Chevalley groups

of type A2n_2 and F4 (with n = 3). Other examples associated with the Chevalley

groups of type An and Dn are described below. Our Theorem may also be of some

relevance to the "pushing-up" problem; see, for instance, [1]. In [5], Goldschmidt

solved the related problem of determining the structure of G(x) and G(y) in the

case that T is a trivalent graph and G£(r) (but not necessarily GK(r)) is transitive.

Some of his ideas play a role in the proof of our Theorem.

I would like to thank the referee for many helpful comments and suggestions.

We begin the proof. Assume that T and G fulfill the hypotheses. For each

x G V(T), G(x) induces a projective plane on T(x). For y G T(x), we denote by

[x : y] the set of those lines in this plane passing through y. If z is a second vertex in

T(x), then [x : y, z] will denote the (unique) line of [x : y] containing z.

Let (w, x, y) be an arbitrary 2-path. If G,(w, jc) < G,(j), then G,(w, x)—

Gx(x, y) and hence G,(w, x) < (G(w, x), G(x, y))= G(x). Since G contains ele-

ments exchanging w and x, we have G,(vv, x) < G(w) too. But since T is connected,

(G(w), G(x)) acts transitively on E(T) and so G,(w, x) — 1. Thus we may assume

that G,(w, x) ^ G¡(y). Since Gx(w, x) < G,(x) < G(x, y), the order of G,(w, x) is

divisible by p. By [2, (2.3)], we have

Lemma 1. For each edge {x, y), G{(x, y) is a p-group and Op(G(x, y)r{y)) =

Op(G(x, y))r<?\    D

Suppose that G,(x) acts intransitively on T(y) - {x} (which is certainly the case

when s = 2). Since G,(x)r<>,) < G(x, y)T{y\ it follows that Gx(x){y'x] = 1. Let <p

denote the homomorphism from G(x, y) to G(x, y)ly:x] defined by <p(a) = aly'x].

Let K denote the kernel of <p. The group K is normal in G(x, y), so if Klx:y] ¥= 1,

then Klx'y] is transitive and, in particular^ + 1 11 K{x-y] |. Since | Kr<-y) \ \ (p - l)p2

and Gx(y)lxy] — 1, we conclude that in fact Klx:y] = I. Thus <p induces an isomor-

phism from G(x, y)[x:y] to G(x, y){y'x] which, because G(x, yfx'rt\> L2(p), is in

turn induced by a bijection from [x : y] to [y : x] which we denote by </>(Jt y In

particular, a(z) G [y : x, z] for each a G G(w, x, y) and each z G >¡>(xy)([x : w, y])

which implies that s = 2. (Thus <í>(Xi>,) is only defined when s = 2. Note that if we

replace L3(p) by Ln(q), n s* 3 arbitrary, in the statement of the Theorem, G(x, y)

induces on [x : y] and [y : x] a projective space of dimension n — 2. When j = 2 we

still have a natural isomorphism from G(x, y)lx:y] to G(x, _k")[>,:x1, but if n 3* 4, we

can only conclude that it is induced by a collineation or a correlation between these

two projective spaces. Both cases actually occur in interesting examples: If G = Dn(q)

and T is the graph whose vertices are the maximal subspaces of the associated polar

space, two being joined by an edge if their intersection is maximal in both, then the

isomorphism is induced by a collineation; if G = An(q) with n > 4 and T is the

graph whose vertices are the maximal and minimal subspaces (i.e. points and
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copoints) of the associated projective space, two being joined by an edge if one

contains the other, then the isomorphism is induced by a correlation.)

Suppose that Gx(x)[y:x] ¥> 1 (so s > 3). Since Gx(x)ny) < G(x, y)T(y\ we con-

clude that Gx(x)[y:x] > L2(p) except perhaps whenp *s 3 in which case | Gx(x)[y:x] \

= p + 1 is also possible. Suppose that this actually holds. Let a G G(x, y) be an

arbitrary p-element such that a[x:y] ^ 1. Then a[x'y] G Gx(y)íx:y^ and, in particular,

a G Gx(y). Since Gx(x)ny) > Op(G(x, y)T(y)), there exists a p-element b G Gx(x)

such that ab has fixed points in T(y) - {x}. Note that both (ab)T(x) and (ab)T(y)

are p-elements; since Gx(x, y) is ap-group, ab is a p-element too. Among the fixed

points of ab in T(y) there is exactly one, say z, such that (ab)ly'z] = 1. Thus there

exists an element c G Gx(z) such that abc G Gx(y). It follows that (aè)r<z) =

(abc)T(z) G G,(y)T(z). Since ab is ap-element, (ab)[z:y] = 1. Now choose an element

¿ëG|(v) acting nontrivially on [x:j>] and set e = [d,ab). Then e(*!*' is a

nontrivial p'-element but ep G Gx(y, z) so | e | is a power of p. With this contradic-

tion, we conclude that Gx(x)ly:x] r> L2(p) even whenp *£ 3.

Continuing to assume that s s* 3, we let <i> denote the homomorphism from Gx(x)

to Gx(x)[yx] defined by </>(a) = a[y:x]. Let AT be the kernel of <i>. Since

Klw:x] < Gx(x)iw:x]c>L2(p), p+l\\Klw:x]\ if Klw:x] *= 1. But | JT/G,(jc, j») ||

(p — l)p2 and G,(x, ^)[w:xl = 1 (since otherwise, because G,(x, y) < G,(x),

G,(x, j)tH,Jcl would be transitive which contradicts the fact that Gx(x, y) is a

p-group) so A'[M,:xl = 1 too. Hence <p induces an isomorphism from Gx(x)lw'x] to

Gx(x)[y:x] which, because G,(x)[M,:xlr>L2(p), is in turn induced by a bijection

<j>(w ) from [w : x] to [y : x]. Choose a G G(w, x, y) and t> G T(w) — {x} and let

M be the subgroup of Gx(x) fixing [w: u, jc]. Then <r\w,x,y)dw '• u> xl) is me unique

line in [y : x] fixed by M and <\WjXi>,)(a([w : «, •*])) the unique line in [y : x] fixed by

aMa'\ i.e. a(<p(w ̂ ^^[w : r, x])). Thus «fy*,,^^ commutes with the action of

G(w, x, z). In particular, G(v, w, x, y) fixes </>(W;Xi>,)([vv : v, x]) and so (see [8]) 5 = 3.

(Thus <t>(WiXiy) is only defined when s = 3. We point out that if L3(p) is replaced by

Ln(p), n > 3 arbitrary, in the statement of the Theorem, we still have an isomor-

phism from Gx(x)lw:x] to Gx(x)[yx] which, however, can be shown by an easy

argument (see [9]) to be induced by a collineation between the projective spaces

induced on [w : x] and [y : x] so we do not have the problem mentioned above in

the case s = 2.)

Definition. Let (x0,...,xs+x) be an arbitrary (s + l)-path in T. We call

(x0,... ,xs+x) crooked if <t>(Xw..,xßxx : x0, x2]) ¥= [xs : xs_x, xs+x]. If (x0,... ,xr) is

an arbitrary path of length r > s + 1, we call (x0,... ,xr) crooked if (x,,... ,xi+s+x)

is crooked for 0 < i < r — s — 1.

Lemma 2. Let (x0,... ,x2s) be an arbitrary crooked 2 s-path. If a G G(xx,... ,x2s_x)

is a p-element fixing [xx : x0, x2] and [x2s_x : x2s_2, x2s], then a G Gx(xs).

Proof.   The   element   a   fixes   [xs : xs_,, xs+x],   <t\x..,,x )([xx : x0, x2])   and

<f>(J(2j .^)([x2i-i : *2s-2> x2s])- Since (x0,...,x2s) is crooked, these lines do not

contain a common point. Since a is ap-element, a must act trivially on T(xJ).    D
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Lemma 3. Let (x0,... ,x5) be a crooked 5-path. If s = 2, then there are elements in

Op(G(xx)) fl G(x3) not fixing [x3 : x2, x4]. If s = 3, then Gx(x0, xx) n G(x3, x4) 4

Gx(x2) or Gx(x0, xx, x2) =£ Gx(x3); in the former case, Gx(x0, xx) n G(x3, x4) con-

tains elements not fixing [x4 : x3, x5].

Proof. Since Op(G(x x))T(x^ = Op(G(xx, x2)T(x^), Op(G(xx)) n G(x3) certainly

contains elements acting nontrivially on T(x2). If s = 2, then such elements do not

fix [x3 : x2, x4] by Lemma 2.

Let s = 3. The last claim follows from Lemma 2 so we need only show that

Gx(x0, xx) n G(x3, x4) 4 Gx(x2) or G](x0, x,, x2) < G,(x3). Since

G,(x0, xx) < G(x0, jc,, x2) and G(x0, x,, X2) acts transitively on T(x2) — {xx},

there certainly exist elements in Gx(x0, xx) n G(x3) — Gx(x2). Let a be one which,

we may assume, does not fix x4. Since a G Gx(xx), a acts trivially on [xx : x2] and

hence on tyx x )([xx : x2]) = [x3 : x2] too. But G,(x,, x2) acts trivially on [x3 : x2]

too. Thus if Gx(x0, xx, x2) ^ G(x4), then ab G G,(x0, x,) D G(x3, x4) — G,(x2)

for some suitable element b G G,(x0, x,, x2). Hence we may suppose that

G|(x0, x,, x2) < G(x4), i.e. that G,(x0, x,, x2) acts trivially on [x3 : x2, x4]. Since

G,(x2)[x':X2l> L2(p), there exists an element c G G(x0) fl G,(x2) inducing a per-

mutation of order p on [x, : x2] and hence on [x3 : x2] too. Since (x0,...,x4) is

crooked, c does not fix [x3 : x2, x4]. Since c normalizes G,(x0, xx, x2), Gx(x0, xx, x2)

acts trivially on at least two lines in [x3 : x2]. It follows that G,(x0, x,, x2) < G,(x3).

D

Suppose that ZOp(G(x, y)) (i.e. the center of Op(G(x, y))) is not contained in

Gm(x, y) for some edge (x, v) and some m. Then there exists an edge {u, v) and an

element a G ZOp(G(x, y)) such that Gm(u, v) < Op(G(x, y)) and a G G(u) - G(v).

We have Gm(u, v) = Gm(u, v)a = Gm(u, a(v)) and so Gm(u, v) < (G(u, v),

G(u, a(v)))—G(u). Since there exist elements in G exchanging u and v,

Gm(u, v) < G(v) as well. Thus Gm(u, v) = 1. Let m = 3 if s = 2 and m = 5 if

5 = 3. We may thus suppose from now on that ZOp(G(x, y)) "6 Gm(x, j>) for every

edge {x, v}.

Now let (x0,... ,xs+x) be an arbitrary crooked (s + l)-path. Since G acts transi-

tively on the set of 5-paths in T, there exists an element g G G such that g(x¡) = x,+,

for 0 « /' < 5. Let x, = g'(x0) for every /' G Z. (Of course, since T is finite, there are

only finitely many distinct x¡.) Let W = ( ■ • • ,x_,, x0, x,, x2, • • • ). Then W is a

crooked path.

Note that by Lemma 2, GX(W) is the subgroup of G(W) generated by all the

p-elements of G(W). We suppose for the time being that this subgroup is trivial.

Thus we can find an element a G ZOp(G(x0, xx)) not contained in ZOp(G(xx, x2)).

Let a G N be maximal such that a G G(x0, x,,... ,xa+1). Since ZOp(G(x0, x,)) <

Gm(x0, x,), a> m and ag' G Op(G(x0, x,)) for | i |< m. In particular, [a, ag] = 1 =

[a, a*2].

Suppose 5 = 2. If a(xa+2) & [xa+x : xa, xa+2], then a G G,(xa). But a fixes

[x0 : x„_,, xa+]] and <^x x )([xa_, : xa_2, xa]). These lines are distinct since Wis

crooked and so a acts trivially on [xQ : xa_,]. It follows that a acts trivially on
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[x„: x„_,, xa+1] but on no other line in [xa : xa_,]. Thus ag fixes the vertices in

[xa+1 : xa, xa+2] but has no other fixed points in r(xa+1). In particular, [a, as] G

G,(xa+1). This contradicts the observation above that [a, ag] = 1. Hence a(xa+2)

G [xa+| : xa, xa+2]. If 5 = 3, this same conclusion follows analogously from the fact

that [a, ag ] = 1. By Lemma 2, we have a G Gx(x0,...,xa) if s = 2 and a G

G,(x0,... ,x„_|) if 5 = 3. Finally, choose an element b G ZOp(G(x0, x,)) not con-

tained in ZO (G(x_x, x0)) and let ß G N be maximal such that b G

G(x_ß, x_ß+x,...,x0, x,). Just as for a, we have b(x_ß_x) G[x_ß: x_ß_x, x_ß+x]

and ¿> G Gx(x_ß+X,... ,x0, x,) if s = 2, b G G,(x_^+2,... ,x0, x,) if 5 = 3.

For each /' G Z, let a¡ = ag' and Z>, = 6s'. If [a, bß+x] — 1, then a G

ZO^Gify+rixo), x,)) and so (since bß+x(x0) G [x, : x0, x2] - {x0}) a G

ZOp(G(xx, x2)) which contradicts the choice of a. Thus [a, bß+x] ¥^ I. But bß+x G

ZGp(G(x/S+i,x;9+2)) and a G G,(x0,.. .,xtt_s+2) so a G G),(G(x^+„ x^+2)) and

hence [a, bß+x] = 1 after all unless a — s + 2 < ß. By considering the element

[a_a_x, b], we conclude analogously that ß — s + 2 < a. Hence a = ß if s — 2 and

/}—l<a</8+lif5 = 3. Without loss of generality, we may assume that a = ß

orj8+ 1.

Let c = [a, bß+x\. We have c = a- (a_1)^+l G ZOp(G(xx)) (since ZOp(G(u, x,))

*£ G,(m, x,) =s CT,(G(x,)) for each u G T(x,)) as well as c = bß+x ■ bß\x G

ZO/,(G(xa+i)) (whether a = ß or ß + I). Let C denote the centralizer in G of the

element c. First let 5 = 2. By Lemma 3, there exists an element d in Op(G(xx)) D

G(x3) - G,(x2). Sincedand a_a+2 G O/G^,)) < Candfy+j G Op(G(xa+1)) < C,

we have (¿, a_a+2, bß+3)< C(x3). Since the element d does not map [x3 : x2, x4] to

itself, C(x3)T(X:>) r> L3(p). In particular, C(x2, x3) contains an element e which does

not map 4>iX2tXi)([x2 : xx, x3]) to itself. It follows that (e, a_a+x, bß+2)^ C(x2) acts

transitively on T(x2). Since T is connected, C therefore acts transitively on E(T).

This contradicts the fact that c =£ 1.

We conclude that 5 = 3. If Gx(x0, x,, x2) ^ G,(x3), then g normalizes

G,(x0, x,, x2) and so G,(x0, xx, x2) < G,(W) = 1 which contradicts the fact that

a G G,(x0,...,xa_,). By Lemma 3, therefore, there exists an element dG

G,(x0, x,) n G(x3, x4) not mapping [x4 : x3, x5] to itself. Thus (d, bß+4, a_a+3)<

C(x4) acts transitively on T(x4). Moreover, dg and a_a+4 G Op(G(xx)) < C and

bß+i G Op(G(xa+x)) ^ C (even when a = 5 since in this case /? = 5 too and

¿> G Gx(x_ß+X)). Thus C(x5) acts transitively on T(x5) and so C acts transitively on

E(T). Again this contradicts the fact that c ¥= 1. With this contradiction we conclude

that GX(W)¥= 1.

Let Tp be the functor which assigns to each group the subgroup generated by its

p-elements. Choose t maximal such that Tp(G(x0,.. .,x,)) 4 G(xt+X). (Since there

are only finitely many distinct x,, / certainly exists.) Then Tp(G(x0,...,xt+x)) *s

7^(G(x,,...,x/+2)) and so g normalizes Tp(G(x0,... ,xl+x)). It follows that

Gx(xu...,Xl)<Tp(G(x0,...,xi+x))=Tp(G(W)) = Gx(W)<Gx(xx,...,xt). Let N

denote the normalizer of G,(x,,... ,x,) in G.

Let 5 = 2. Since Op(G(xx)) (1 G(x3) 4 G(x4), we have / > 3. Suppose

Tp(G(x0,...,x,)) contains an element a such that a(xt+x) G [x,: x,_,, xi+1]. Of
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course, a G G|(x,_,). Since a fixes both [x,_, : xr_2, x,] and

<kxrî,x,-rflxt-2 '■ *i-3» *(-il)> « acts trivially on [x,_, : x,_2]. Thus xl+x¥=a- ag ■
a~'(x,+ 1) G [x, : x,_,, x,+ 1]. Let bx = a • as ■ a'1. By the choice of t (and the fact

that g G N), we have Tp(G(x0,... ,x,)) 4 G(x_,). It follows that iV*(x0, x,) contains

a p-element b2 such that x_x ¥= b2(x_x) G [x0 : x_,, x,]. Thus (a, bx, ¿>f')< N(xt)

acts transitively on T(x,). Since T is connected, (g, N(xt)) thus acts transitively on

V(T) which contradicts the fact that GX(W) ¥= 1. We conclude that a(x,+ x) G

[x, : x,_„ x,+ 1]foreacha G Tp(G(x0,.. .,x,)).

Let 5 = 3. If Gx(x0, xx, x2) < G,(x3), then G,(x0, x,, x2) = GX(W) and so

G(x0, x,, x2) < N. But then (G(x0, xx, x2),G(x0, xx, x2)g )< N(x2) acts transi-

tively on T(x2). Since g G N, we conclude that G,(x0, x,, x2) = 1 which contradicts

our conclusion that GX(W) ¥= 1. Thus we may assume by Lemma 3 that t s» 5. We

can argue now just as in the previous paragraph that a(xl+x) G [x, : x,_,, x/+1] for

every element a G 7^,(G(x0,... ,x,)).

In both cases (i.e. 5 = 2 and s = 3) we thus have that for each /' G Z, A^x,) maps

[x,: x,_,,x,+ ,] to itself and AT(x,)[x':x'-"x'+1,!> L2(p). Let A be the graph with

vertex set xfi and edge set (x0, x^. Then | A(x0) | = p + 1 and N acts transitively

on the set of all (t + l)-paths in A. By [2, (3.15)], we have t < 6.

Let 5 = 3. Since G,(x,,...,x,) = GX(W), we have G(x,,...,x,) *C N and hence

G(x_,,.. .,x4) < G(x_,,.. .,x,_2) = G(xx,...,x,)g < N. Since, as we have already

seen, G,(x0, x,, x2) 4 G,(x3), there exists by Lemma 3 an element in G,(x0, x,) fl

G(x3, x4) < G(x_,,... ,x4) < N(x4) which does not map [x4 : x3, x5] to itself. With

this contradiction, we conclude that 5 = 2.

We claim that G acts transitively on the set of crooked (t — l)-paths in T. Let

(«0,...,«,_,) and (v0,...,v,_x) be any two; we want to find an element in G

mapping the one to the other. Since G acts transitively on the set of all 2-paths in T,

we may assume that m, = v¡ for 0 < / < 2. By Lemma 3, Gx(u0) n G(u2) acts

transitively on [u2: ux] - {<f>(U|,„2)([w, : u0, u2])}. Since («0,...,u3) and (ü0,...,t>3)

are both crooked, we may thus assume that v3 G [u2: «,, u3]. But then Gx(ux)

contains an element mapping u3 to v3 so we may just assume that u3 = v3. We may

assume too that t — 1 > 4.

Again by Lemma 3, G,(«,) fl G(u3) acts transitively on [u3 : u2] —

{tyu ,u )(iu2 '■ "i> u3l)}> trius we may assume that v4 G [u3 : u2, u4] and we can find

an element in G mapping (x0,.. .,x3) to (u0,.. -,u3) and [x3 : x2, x4] to [u3 : u2, u4].

Since 7^(G(x3_,,.. .,x3)) acts transitively on [x3 : x2, x4] — {x2}, there exists an

element in G(u0,.. .,u3) mapping u4 to v4. Thus we may assume that u4 = v4 and

that t - 1 = 5.

Once again by Lemma 3, there exists an element a in Gx(u2) fl G(u4) — Gx(u3).

Since G acts transitively on crooked 3-paths and Gx(u2, u3) 4 Gx(ux), Gx(u2, u3)

acts transitively on [ux : w0, u2\. Thus G,(w2, m3) contains an element b such that

ab G G(u0). By Lemma 2, (ab) acts transitively on [u4 : u3] —

{^>(«3,u4)(["3: u2> "4])}; mus we maY assume that v5 G [u4 : u3, u5] and we can find

an element in G mapping (x0,... ,x4) to (w0,... ,u4) and [x4 : x3, x5] to [u4 : u3, u5].

Since Tp(G(x4_,,...,x4)) acts transitively on [x4 : x3, x5] — {x3}, there exists an
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element in G(u0,.. .,u4) mapping u5 to v¡. Thus G does in fact act transitively on

the set of all crooked (t — l)-paths in T.

Note that the parameter t is defined for each crooked path (..., x_,, x0, x,, x2,...)

such that there exists an element g G G with g(x¡) = x,+, for each / G Z. We may

assume that (..., x_,, x0, x,, x2,...) is chosen among all such crooked paths so that

the value of t is maximal; thus for each crooked ¿-path (w0, if,,... ,ut) such that there

exists an element h G G with h(u¡) = u¡_x for 1 < i" < t, h normalizes Gx(ux,...,«,).

Let   w G T(x,) — [x, : x0, x2] — <¡>(x     ,([x2 : x,, x3])   be   arbitrary.   Since

(w, x,, x2.x,) is crooked and G acts transitively on the set of crooked (t — 1)-

paths in T, there exists an element h G G such that h(xx,. . . ,xt) =

(w, x1,x2,...,x,_1). The element h normalizes G,(x,,.. . ,x,) and so hg G G(x,) lies

in N but does not map [x, : x0, x2] to itself. This contradiction concludes the proof

of the Theorem.
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