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SHORTER NOTES

The purpose of this department is to publish very short papers of unusually

elegant and polished character, for which there is no other outlet.

A SIMPLE PROOF OF RADÓ'S THEOREM

ALAN McCONNELL

In this note we show that Radó's theorem [3] (sometimes called the Radó-Behnke-

Stein-Cartan theorem—see [2] and the literature cited there) is an easy consequence

of a basic lemma in the analytic theory of Riemann surfaces, often called Weyl's

lemma [1].

Radó's theorem reads: Iff(z) is a complex-valued function continuous on the unit

disc D and analytic where it is not zero, then it is analytic in all ofD.

Weyl's lemma states: Ifd> is a real-valued Lebesgue measurable function onD such

that f fD<j>- Ap dx dy = 0 for every C°° function p, with compact support contained

in D, then <j> is almost everywhere equal to a harmonic function on D.

Here is how to deduce Radó's theorem from Weyl's lemma. Let f(z) = u(z) -\-

iv(z); we shall use Weyl's lemma to show that u and v are harmonic on all of D. Let

D = Z U N where Z = {z6D: u(z) = 0} and N is the open subset of D where

u(z) is nonzero and, hence, is harmonic. Let {Ui} be a countable locally finite open

covering of N by disc-like sets, and let {ei(z)} be an associated C°° partition of

unity. Finally, let p(z) be a C°° "test function" as above. We have

/ /  u ■ Ap dxdy =     I u- Ap dxdy + / /   uAp, dxdy

uAfi dxdy-IL
IN

since the integral over Z, where u(z) = 0, is zero. But

/ /   u ■ Ap dxdy = ^ / /   u • A(e¿p) dxdy,
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/ /   u ■ A(e¿p) dxdy =     I   « • A(e¿p) dxdy

= 11   Au • eip. dxdy = 0.

(Note that e¿p and all its derivatives are zero on dUi.) Thus u is harmonic on D,

and similarly v is harmonic on D also.

To finish the proof of Radó's theorem, we must show that u and v are conjugate

harmonic functions on all of D. Since u and v are obviously harmonic conjugates

off their common zero set, it is automatic by continuity that they are harmonic

conjugates throughout D. Thus f(z) = u(z) -f- iv(z) is analytic on D.    Q.E.D.
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