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ON THE LATTICE OF SUBALGEBRAS

OF AN ALGEBRA1

LINDA L. DENEEN

Abstract. Let R be a Noetherian inertial coefficient ring and let A be a finitely

generated /?-algebra (that is, finitely generated as an R-module) with Jacobson

radical J( A ). Let 5 be a subalgebra of A with S + J( A ) = A. We show that for every

separable subalgebra T of A there is a unit a oí A such that aTa'1 C S. It follows

that if S is separable (hence inertial) and if T is a maximal separable subalgebra of

A, then T is inertial. We also show that if S + / = A for a nil ideal I oí A, then R

can be taken to be an arbitrary commutative ring, and the conjugacy result still

holds.

All rings will be associative and will possess an identity element 1. All subrings

will contain the identity of the overling, and ring homomorphisms will map the

identity to the identity.

If A is a ring, R a commutative ring, and 0 a ring homomorphism of R into the

center of A, then 6 induces a natural A-module structure on A defined by r ■ a = 0(r)a

for r El R, a El A, and we say that A is an R-algebra. An i?-algebra A is said to be

finitely generated or projective if it is finitely generated or projective as a module over

R. For all rings R we let J(R) denote the Jacobson radical (or radical) of R. We

denote by p the multiplication map p: A ® A° -> A and let J = ker p.

Recall that an Ä-algebra A is separable over R (or separable) if its enveloping

algebra A ®R A° contains an idempotent e with the property that p(e) = 1 and

/ • e — 0. If A is a finitely generated algebra over a commutative ring R, then a

subalgebra S of A is an inertial subalgebra if S is a separable Ä-algebra such that

S + J(A) = A. A commutative ring R is an inertial coefficient ring if every finitely

generated Ä-algebra A for which A/J(A) is separable contains an inertial subalge-

bra. Basic properties of separable algebras can be found in [3], and basic properties

of inertial subalgebras and inertial coefficient rings can be found in [7].

If A is a finitely generated Ä-algebra and I is an ideal of A, then we say we can

"lift idempotents from A/I to A" if every idempotent in A/I is the image of an

idempotent in A under the natural map from A to A/I. In [9, Theorem 4, p. 221]

Kirkman proved that if R is an inertial coefficient ring and A a finitely generated

Ä-algebra, then idempotents can be lifted from A/J(A) to A. Ingraham has
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conjectured that the converse is true as well; that is, if R has the property that

idempotents can be lifted from A/J(A) to A for every finitely generated Ä-algebra

A, then R is an inertial coefficient ring.

Let J! be a commutative ring and A a finitely generated A-algebra. We are

interested in finding conditions under which a maximal separable subalgebra T of A

is inertial. It is clear that if S is an inertial subalgebra of A, and if a is a unit of A

such that aTa~l Q S, then Tis inertial. Thus we are led to look for conditions under

which we can conjugate Tinto S.

We consider the more general question: Under what circumstances can any

separable subalgebra T of Abe conjugated into any subalgebra 5 with S + J(A) — Al

There are examples due to N. Ford [4] of rings R and finitely generated Ä-algebras A

containing nonisomorphic inertial subalgebras. Since inertial subalgebras are maxi-

mal separable subalgebras [7, Theroem 2.5, p. 80], such conjugation does not always

occur. The main result of this paper is to prove that it does occur whenever R is a

Noetherian inertial coefficient ring.

Theorem 1.1. Let R be a Noetherian inertial coefficient ring, and let A be a finitely

generated R-algebra. Let T be a separable subalgebra of A, and let S be a subalgebra of

A with the property that S + J(A) = A. Then there is a unit a of A such that

aTa~x C S.

Proof. Step 1. We first reduce to the case where A/J(A) is separable over R. Let

A, = T + J(A). Then J(A) C J(A\) [1, Corollary, p. 126], so A1/J(A]) is a homo-

morphic image of T and hence is separable. Setting S, = S n A,, we clearly have

S, + J(A) C Av To show equality, we write an arbitrary element a, of A] = T +

J(A) as t + n where t G T, n G J(A). Since a, also lies in A = S + J(A), we have

t + n — s + «, for ä G S, «, G J(A). It follows that s — t + n — «, is in 5 n (T +

J(A)) = 5,, so that a, G S] + J(A), and we have 5, + J(A) — Av If the theorem is

true for A,, then there is a unit a G A, ÇA such that aTa'1 C Si C S. Thus, it

suffices to prove the theorem in the case that A/J(A) is separable over R.

Step 2. We now reduce to the case where 5 is separable, hence inertial. By [1,

Corollary, p. 126], S n J(A) C J(S), but S/[S n J(A)] =á A/J(A) is semisimple, so

S (1 J(A) = J(S). Since R is an inertial coefficient ring, S contains a separable

subalgebra S, such that 5, + J(S) = S, and it follows that 5, + J(A) = A. Clearly,

if we can conjugate T into S,, we can conjugate it into S. Therefore, we assume S is

an inertial subalgebra.

The remainder of the proof involves the following setting. Let A — A/J(A),

f= T/(T n_J(A)), and R = R/(R n J(A)). Let /: S ®« T° ^A®«f° and g:
T®RT° -» A ®rT° be the natural maps, and let e be a separability idempotent for

T with e — g(e). Then

ker/=i[(Sn/(A))®J,r° + S®R(Tn J(A))°] cJ(S®RT°)

[1, Theorem 10, p. 127]. Since R is an inertial coefficient ring, idempotents can be

lifted from (S ®R T°)/J(S ®R T°) toS®RT\ andjt follows from [6, Corollary 1.3,

p. 46] that we can lift idempotents from A ®RT° to S®RT°, so let e, be an
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idempotent in S ®R T° such that/(e,) = e. The picture looks like this:

/ -_   =,

g(e) = e=f(e,)

/

■

If p: A ®R A° -» A is the multiplication map, then we will show that p(e,) is the

conjugating element we seek. In other words, providing e, is an idempotent preimage

of ë, we will show that p(ex)Tp(e,)"' <Z S.

Step 3. Let R be a field. The proof of [2, Lemma 2.7, p. 127] gives the existence of

a unit a in A of the form a = 1 + n for n in J(A) such that aTa~l C S. If we define

<p: T -» S by tp(t) = ata-1, then the map <p ® 1: T®RT° -* S®RT° makes the

preceding diagram commute. Furthermore,

kerf=i[(S DJ(A))®RT° + S ®R (T n J(A))°] =0,

since S and T are separable over the field R. Therefore, if we let e, = (<p ® l)(e),

then e, is the unique preimage of ë in S ®R T°, and e, is also an idempotent.

Because e is a separability idempotent for T, we have (1 ® r — r ® 1) • e = 0 for

every / in T. Applying <p ® 1, we have (1 ® í — (p(/) ® 1) ■ e, = 0. Next apply p,

recall that <p(t) = aiof', and notice that p(ex)t — ata'lp(el) — 0. It follows that

p(el)tp(el)'i = ata~i is in S, provided p(e,) is invertible. But p(e) = 1, so p(e,) =

1 + « for some « G J(A); consequently p(e,) is invertible.

Step 4. Suppose (/?, m) is a Noetherian local ring with m" = 0 for some positive

integer n. We proceed by induction on n. If n = 1, then i? is a field, and the result

follows from Step 3. Assume the statement is true for n « k, and consider the case

where n = k + 1.

Let Ä = A/(mkA), R = R/mk, f/(mkA n T), and S = S/(mkA n 5). Since

mkA C J(A) by [7, Lemma 1.1, p. 78], then J(Ä) = J(A)/mkA. Letting ë] and ë be

the images of e, and e, and taking/and g to be the induced maps from/and g, we

have the following situation:

S®Rf°->I®Rf°

êi / g(ë) = ë = f(ëx)

f ®R f°
ë

Both f and S are separable over R, ë is a separability idempotent for f, and

S + J(Ä) = A. Then the induction hypothesis gives that p(ë,)7p(ë,)"' Ç 5\ Pulling

this inclusion back to A, we have /¿(e,)!/')!^,)"1 C S + mkA.

Now let C = 5 + w*A and T = p(e{)Tp(e,)"'. 5 is an inertial subalgebra of C,

and C is a finitely generated .R-algebra because R is Noetherian. Write e — 2 y, ® 8,,
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where y, e^i^r, and let

e' = 2[^(el)ylp(ei)-1 ® p(ei)Sip(eiy1].

One easily sees that e' is a separability idempotent for 7'. Write e, = Sot- ® /?y

where a, G 5 and /?, G 7°, let ej = 2ay ® pie,)/^«?,)"1, and notice that <?; is an

idempotent. It is not hard to see that J(C) - C n J(A), C/J(C) = A, and

T'/(T' n 7(C)) =* 7. Thus, we have natural maps /': S ®R T'° -» A ®* 7° and g':

7" ®* 7'° -* A ®RT° with/'(e',) = ë = g'(e'). We can now use the same argument

here for C that we used previously for A to conclude that

p(e\)T'p(e\)    ç S + mkC = S + mk(S + mkA) = S.

Equivalently,p(e',)p(e,)7p(e1)-1p(e;)"1 Q S. But

r*(«i)r*(*i) = (2oyr*(«i)^M(«i)"!) • m(«i) = 2 «.//*( «i)0;

= [2«y®0;] ■ ri(el) = el •p(e,)=p(e1 -ei) = p(e,).

Thus we have shown that p(el)Tp(el)'] C S.

Step 5. Let (i?, m) be a Noetherian local ring. Let A: be a positive integer, and pass

to the factor algebra Ä = A/mkA over R = R/mk. Letting 7 = T/(mkA n 7) and

S = S/(mkA n S), we have that 7 is A-separable and S is an Ä-inertial subalgebra

of A. Defining ë, ëx, f, and g as in Step 4, we apply the result of Step 4 to get

p(ël)fp(ë]yl ÇS. Pulling back to A we have p(ex)Tp(e\)~x Ç S + mkA. The

containment holds for every positive integer k, so p(e,)7p(e,)_1 C nj°=1(S + mkA).

But R is a Zariski ring [11, pp. 263-264], so D"=1(5 + mkA) — S, and again we

have shown that p(e1)7p(e1)"1 Ç S.

Step 6. Let Ä be a Noetherian ring and 7' = p(e,)7p(e1)"1. We will show that

7' Ç 5 by showing that Z = (T + S)/S is the zero module. Z = 0 if and only if

Zm = Z®R Rm = 0 for every maximal ideal m of R [3, Proposition 4.4, p. 29]. By

tensoring everything in the diagram in Step 2 with Rm over Ä, we again place

ourselves in the setting of Step 5, where we have 7¡, Ç 5m, or equivalently, Zm = 0.

We conclude that Z = 0, and it follows that p(e,)7p(e1)"1 C S.    D

Example. Let R = Z/4Z, A = M2[R[x]/(x2 - 2)], and S = M2(R). Then 7(A)

= A[q °] + 2 A, so S is an inertial subalgebra of A. Moreover,

7 =
3a + 26      (a + 32>)3c

(3a + b)x      2a + 3b
a, be R

is a separable subalgebra of A with separability idempotent

3
33c

3      3c

33<     2

Let

z =
3     2
2     2

3
33c

+

+

33c
3

2     33c
3c      3

33c

3
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where z G S ®R T° and f(z) — ë — g(e). Notice that z is not an idempotent, and

furthermore, that p(z)7p(z)"' (£ S. Thus we see that there are nonidempotent

preimages z of ë in S ®R 7° for which p(z) does not conjugate 7 into S.

In the proof of Theorem 1.1, once the reductions of Steps 1 and 2 are made, the

only place we use that R is an inertial coefficient ring is when we wish to lift

idempotents. Thus, if we start with the assumptions that A/7(A) is separable and S

is an inertial subalgebra of A, we have the following corollary.

Corollary 1.2. Let R be a Noetherian ring with the property that for every finitely

generated R-algebra, idempotents can be lifted from the algebra modulo its radical to

the algebra. Let A be a finitely generated R-algebra with A/J(A) separable, let S be an

inertial subalgebra of A, and let T be a separable subalgebra of A. Then there is a unit a

in A with aTa'x Ç S.

Conjugates of inertial subalgebras are inertial subalgebras, so if we are in a setting

where inertial subalgebras exist and Theorem 1.1 applies, the following corollary

holds.

Corollary 1.3. // R is a Noetherian inertial coefficient ring and A is a finitely

generated R-algebra with A/J(A) separable, then every separable subalgebra is

contained in an inertial subalgebra, and every maximal separable subalgebra is an

inertial subalgebra.

When A is a commutative, finitely generated algebra over a commutative ring R,

the situation becomes much simpler.

Proposition 1.4. Let A be a commutative, finitely generated algebra over a

commutative ring R. Let S be a subalgebra of A with S + J(A) = A. If 7 is a

separable subalgebra of A, then 7 Ç 5.

Proof. If we consider A as an 5-algebra, then S is an 5-inertial subalgebra of A.

Then S ®R 7 is S-separable, and S ■ 7 is a homomorphic image of S ®R 7, so S • 7

is an 5-separable subalgebra of A. Furthermore, since S C S ■ 7, 5 • 7 is also an

S-inertial subalgebra of A. Therefore, by [7, Proposition 2.6, p. 80], S • T = S, and

consequently T Ç S.    D

The following result removes both the Noetherian and inertial coefficient ring

conditions on R in Theorem 1.1, but we are forced to replace the Jacobson radical of

A with a nil ideal I of A. Ford's example shows that we cannot expect this result to

be true for 7(A) instead of /. It is still unknown whether Theorem 1.1 is true when R

is an inertial coefficient ring which is not necessarily Noetherian.

Proposition 1.5. Let R be a commutative ring and A be a finitely generated

R-algebra. Let I be any nil ideal of A, and let S be an R-subalgebra of A such that

S + I = A. If T is any separable subalgebra of A, then there exists an element a in A

such that aTa'] Ç S.

Proof. We use the technique of selecting a suitable Hubert subring Rx of R and

an Ä,-algebra A, which satisfy the conditions of Theorem 1.1. We then lift the result

back to A.
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By [10, Theorem 5, p. 5], 7 is a finitely generated A-algebra, so write 7 = Rtt +

Rt2 + ■ • • + Rtm for /, G 7. 7 is Ä-separable so there are elements xi and y¡ in 7 such

that 2 x¡ ® y¡ is a separability idempotent for 7 in 7 ®R 7°. Thus we have, for every

j = 1,.. .,m,

(*) (tj® 1 - 1 ®tJ){2x,®yl) =0   in 7®« 7°.

Think of T®RT° as a free abelian group with subgroup âof relations factored out,

and notice that there is a finite subset Mj of 7 U R such that the elements of &

making (*) zero in 7 ®R T° are expressible in terms of the elements of AÍ-.

Let a,,... ,a„ generate A as an Ä-module. Since 5 + / = A, there exist j'„... ,s„ in

S and p,,.. . ,p„ in I with a, = s) + p, for ;' = 1,...,«.

Now set 5 = {1, «¿a,, s,, r,} and C = {1, í,íy, x,., #} D (U .A/y). Write each ele-

ment of the finite set 5 as an Ä-linear combination of a,,...,a„, and write each

element of the finite set C as an A-linear combination of ',,... ,tm. All of this will

involve only finitely many coefficients from R. Let Rt be the Noetherian subring of

R generated by this finite set and the "prime" subring P of R. P is a homomorphic

image of the Hilbert ring Z, the integers, so P is a Hubert ring. Rx is finitely

generated as an algebra over P, so R{ is a Hilbert ring [5, Theorems 2 and 3, pp.

136-137]. Therefore, B, is an inertial coefficient ring [8, Corollary 2, p. 553].

Define A, = B,a, + -R,a2 + • • ■ +/?,a„. By construction of /?,, we have 5 Ç A,,

so A, is a finitely generated i?,-algebra containing the s/s and the i,'s. Consequently,

we can take S, to be the Rl-subalgebra of A, generated by sl,...,sn. Next let

7, = Rltl + R\t2+ • • • +R]tm, so 7, is a finitely generated Ä,-algebra containing

the set C. Furthermore, 2x,®j, is an element of 7,®Ri7° satisfying (*) in

7, ®R¡T°. Consequently, 2x,®>'/ is a separability idempotent for 7,, so 7, is

R | -separable. Finally, we let /, — I C\ Av Since / is nil, 7, is nil, and it follows that

7, C 7(A,). Recall that a, — s¡ — p, is in I, and since a, — si is also in A,, then

a, — s, = p, is in /, for i = 1,2,...,«. The relations a, = s¡ + p, imply that 5, + 7,

= A,, and it follows that 5, + 7(A,) = A,.

Now A | satisfies all the conditions of Theorem 1.1, so there is a unit a in A, such

that aT\a~x C S,. We extend back up to A by multiplying by Ä to get RAl = A,

RS\ C S, and R7, = 7. Consider a now as an element of A, we have a7a"1 =

a(RT])a~i = R(aTxa~]) C Ä51, Ç S, and we are done.    D

Note. If R is a Hilbert ring, the hypothesis of Proposition 1.5 are fulfilled for

7 = 7(A).
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