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ON DOUBLE CENTRALIZER SUBGROUPS
OF SOME FINITE p-GROUPS

YING CHENG

ABSTRACT. Let A be a maximal abelian normal subgroup of a finite p-group G (p > 2)
such that (G, A) is cyclic. Then (i) C;(Cg(D)) = D and [G: C5(D)] = [D: Z(G)) for
every Z(G) < D < G; (ii) [G: Z(G)] =[G, A)? and every faithful absolutely irre-
ducible representation of G is of degree [G : A). The case p = 2 will also be mentioned.

1. Introduction. Let p be a prime number. For a finite p-group Q, we write Q(Q)
for ©,(Q) if p =2 and £,(Q) if p > 2, where £,(Q) = (x € Q| x? = 1). Beside
this, the notation is standard (cf. [3 or 5)).

The main result of this paper is

THEOREM A. Let A be a maximal abelian normal subgroup of a finite p-group G.
Suppose [G, A] is cyclic and Q([G, A)) C Z(G). Then

(i) Co(Cs(D)) = D and[G: Ce(D)] = [D: Z(G)) for every Z(G) < D < A;

(ii) [G: Z(G)] = [G, A]? and every faithful absolutely irreducible representation of G
is of degree [G: A].

Theorem A(i) and the first part of Theorem A(ii) are special cases of the
following:

TrHEOREM B. Let A = Z(G) be an abelian normal subgroup of a finite p-group G.
Suppose [G, A] is cyclic and Q(G, A]) < Z(G). Then C,(Cz(D)) = D and
[G: C;(D)] = [D: Z(G)] for every Z(G) < D < A.

We note that in case p > 2, the condition Q([G, 4]) < Z(G) is automatically
satisfied.

In §§3 and 4 we will prove these results by applying the double centralizer
property in the theory of an Azumaya algebra B over a commutative ring (with
identity) [2, Chapter II}: Cz(Cy(E)) = E for every separable subalgebra E of B. In
[1], a purely group-theoretical method is given to prove that if G is a finite p-group
with cyclic commutator subgroup G’ such that Q(G’) < Z(G), then C;(C;(D)) = D
for every Z(G) < D < G. In §5, we will also briefly indicate how to prove this result
by the theory of Azumaya algebras.

Finally, we remark that Theorem A(ii) generalizes [5, III, 13.7(c) and 5, V, 16.14].
G. A. How [4] has an independent proof of Theorem A(ii).
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2. Preliminaries. In this section, we will prove two easy lemmas (possibly known).

LEMMA 1. Let U # 1 be a cyclic subgroup of a finite abelian group V. Then V can be
embedded into the units group of a commutative ring R such that

(i) R contains the rational number field Q,

(i) g — 1 is not a zero divisor for any nonidentity element g € U < R.

ProOF. First of all, ¥ can be embedded into a finite homocyclic abelian group, say
A. As U is cyclic, we may assume A = A4; X 4, X --- XA, sothat 4, (1 <i<t¢)is
cyclic, U< A4,, and |4, |=|A4,|= --- =|A4,|. Let 4, = (a;) for1<i<u. {a,a,

--a, a,,...,a,} is a base for 4. The coordinates of nonidentity elements of {a,) in
this base are nonidentity. Embed 4 = (a,a, ---a,)X (a,)X --- X(a,) into the
units group of thering R=C® C® C® - - - ®C, the direct sum of ¢ copies of the
complex field C. In this embedding, it is easy to see that (i) and (ii) are satisfied.

LEMMA 2. Let G = {(x, y) be a finite p-group with cyclic commutator subgroup G’
such that Q(G') < C;(x). Suppose [x?, y] = 1. Then [x, y]? = 1.

Proor. For convenience, let z = [x, y]. If p > 2, then G is regular and [x?, y] =
[x, y]? = 1. (In fact, one can prove this more directly.)

Now let p = 2. The condition [x2, y] =1 is equivalent to z* = z~!. Assume
z & Cy(x) and 2% € Cy(x) with minimal r. That is » > 1 and z>" ' & Cg(x). This
implies 22" # 1. Now (z¥)* = z7% = z¥. S0 "' = 1. 22" is of order 4 and is not
in C;(x), a contradiction. Therefore, z € C4(x) and z? = 1.

3. Proof of Theorem B. By Lemma 1, we may embed Z = Z(G) into the units
group of a commutative ring R such that (1) R contains the rational number field Q,
and (2) g — 1 is not a zero divisor for any nonidentity element g € [G, A] N Z. Let
{x, =1, x,,...,x,} be a set of coset representatives of Z in A. Denote S as a free
R-module with free basis x;, 1 <i < r. Define a multiplication on S, distributively,
as x; - x; = ax,, where x, is the coset representative of x,x; and a € Z C R. Clearly,
S is an R-algebra and A can be viewed, in the natural way, as a subgroup of units
group of S. It is easy to see that the relation ag=a fora € S, g €[G, 4] N Z
implies a = 0.

G = G/C4(A), with elements denoted as g for g € G, acts on A by conjugation.
For convenience, we denote the action as g(x) = gxg~! for g € G and x € 4. We
may extend the action of G to S. Then G is a subgroup of R-automorphisms of S.
Now we may construct a new R-algebra B as in the classical way: First let
{uzlg € G_} be a free basis for a (left) S-module. Define multiplication in this
module by letting (auz}(bu;) = ag(b)uy foralla, b € S, g, h € G and extending by
linearity. Of course, {xu;|g € G, 1 < i<r} is a free basis for the R-algebra B.
Now, we will show that B is a central separable R-algebra.

First it is easy to show that the element

2 xu;®uzix]' €B® B®
I’IG' I<i<r R
gEGCG
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is a separability idempotent for B [2, Chapter II]. So B is a separable R-algebra. For
every D < A which contains Z, let RD denote the R-subalgebra of S generated by D.
As above, it is easy to show that RD is a separable R-subalgebra of B. We claim that
Cz(RD) < SC;( D), the S-subalgebra of B generated by u; for g € C;(D). Suppose
z=3zegazuz € Cy(RD). If h & Cy(D), then there is d € D with minimal order
such that [d, A"'] # 1. So [d?, h~'] = 1. By Lemma 2, [d, h™'] is of order p and
henceisin [G, A] N Z.

z=d'zd=Yazd 'uzd= Jazd 'gdg 'u; = Jazld, g7 ]u;.

So a;[d, h~'] = a; and a; = 0. This proves that Cz(RD) < SC;(D). In particular,
we have Cy(S) = Cy(RA) < SC;(4) = S.

Suppose z € Z(B) = Cg(B). Then z € S. Let z =a;x, + ayx, +--- +a,x,,
where a; € R. For fixed i, 2 < i <r, let g be an element of G with minimal order so
that[g~!, x7 '] # 1. Then[g ™7, x; '] = 1. By Lemma 2, [g™!, x; '] is of order p and
henceisin [G, 4] N Z.

mg=uzz= Y aux;= 3 a;gx,g 'u;= 3 aj[g", xj"']xjug.
J=1 Jj=1 Jj=1

So a,[g™", x;'] = a; and a, = 0. Therefore, z € R and Z(B) = R. That is, B is a

central separable R-algebra.

We note that S is actually a Galois extension of R with Galois group G and
B = A(S: G) in the notation of [2, Chapter III]. Since we do not need this fact, we
will not prove it here.

Now, for every Z < D < A, by double centralizer properties in the theory of
Azumaya algebras [2, Chapter II], we have RD = Cyz(Cyz(RD)). Then

RD = C5(C5(RD)) > C5(SC,(D) ) > R(Co(Co(D)) N 4).

As D=RDNA=CyCi(D)NA=Cy(Cs(D))=D, so D= C(Cz(D)). This
proves the first result in Theorem B.

To prove the second result, let |A/Z|=p" and |D/Z|=p" and take a series
Z=Dy<Dy<:+<D=D<Dy<:- <D, =4, with[Dy,:D]=p(0=<i
< n). Then :

G = Co(Dy) = C(D,) = - -+ = C4(D,) = C5(4).
Applying C,(-) to the above series, we get the original series. So [C;(D;) : C5(D; )]
= p for all i. Hence [G: C;(D)] = p" and [G : C5(D)] = [D: Z]. This completes the
proof of the theorem.

4. Proof of Theorem A and a corollary. Theorem A(i) and the first part of Theorem
A(ii) follow easily from Theorem B. Now let ¢ be a faithful absolutely irreducible
representation of G over a field F. o maps G into M = Mat (F), the full matrix ring
of degree n over F. Let {x, = 1, x,,...,x,} be a set of coset representatives of Z in
A.Let {y, =1, y,,...,5,} be a set of right coset representatives of 4 in G. We first
claim that {a(x;;) |1 <i,j <r} is a linearly independent set over F and Fo(G) is a
central separable F-algebra. In fact, the proof is the same as the method we used to
prove that B is central in Theorem B. Here we omit the detail. Since o is absolutely
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irreducible over F, C,,(Fo(G)) = F. Then
n*=[M: F] =[Fo(G): F][Cy(Fo(G)): F] =[Fo(G): F] = [G: Z].

This completes the proof of Theorem A.
As a corollary to Theorem A(ii) and [6, Theorem 8], we get

COROLLARY. Let A be a maximal abelian normal subgroup of a finite p-group G.
Suppose [G, A] is cyclic and Q([G, A]) < Z(G). Then all maximal abelian normal
subgroups of G are of order | Z(G)|[G: Z(G)]'/?. If, in addition, p > 2, then all
maximal abelian subgroups of G are of order | Z(G)|[G : Z(G)]'/.

5. Finite p-groups with cyclic commutator subgroup. In this section, we will briefly
indicate how to apply the method we used in §3 to the finite p-groups with cyclic
commutator subgroup.

THEOREM C [1, THEOREM 2]. Let G be a finite p-group with cyclic commutator
subgroup G'. Suppose U(G') < Z(G). Then Cz(Cyz(D)) = D for every Z(G) < D < G.

PROOF. As in §2, we embed Z = Z(G) into a good commutative ring R so that
g — 1l is not a zero divisor for every g € G' N Z. Let {g, = 1, g5,...,8,} be a set of
coset representatives of Z in G. Let this set be a free R-basis for an R-module B.
Define a multiplication on B so that B forms an R-algebra and G can be viewed as in
the units group of ‘B. For every Z < D < G, let RD be the R-subalgebra of B
generated by D. By the same method we used in §3, we can obtain that RD is a
separable R-algebra and Cz(RD) = RCy;(D). In particular, Cg(B) = Cx(RG) =
RC;(G) = R. So B is an Azumaya algebra.over R. As RD is a separable R-algebra,
we get

RD = C4(Cy(RD)) = C4(RCG(D)) = RC;(Cy(D)).
By taking the intersection with G, we get D = C;(Cg(D)). This completes the proof.

REFERENCES

1. Y. Cheng, On finite p-groups with cyclic commutator subgroup, Arch. Math. (to appear).

2. F. R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math.,
vol. 181, Springer-Verlag, Berlin and New York, 1971.

3. D. G. Gorenstein, Finite groups, Harper and Row, New York and London, 1968.

4. G. A. How, Private Communications.
5.B
6

. Huppert, Endliche Gruppen. 1, Springer-Verlag, Berlin and New York, 1967.
. T. 1. Laffery, Centralizers of elementary abelian subgroups in finite p-groups, J. Algebra 51 (1978),
88-96.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637



