
ON DOUBLE CENTRALIZER SUBGROUPS

OF SOME FINITE p-GROUPS
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ABSTRACT. Let A be a maximal abelian normal subgroup of a finite p-group G ( p > 2)

suchthat [G, A] is cyclic. Then (i) Cc(Ca( D)) = Dand[G: CC(D)] = [D: Z(G))for

every Z(G) * D =s G; (ii) [G : Z(G)] = [G, A]2 and every faithful absolutely irre-

ducible representation of G is of degree [G : A]. The case p = 2 will also be mentioned.

1. Introduction. Letp be a prime number. For a finite p-group Q, we write $l(Q)

for ti2(Q) if p = 2 and QX(Q) if p > 2, where Q,.(g) = (x E Q | x*' = 1>. Beside

this, the notation is standard (cf. [3 or 5]).

The main result of this paper is
■

Theorem A. Let A be a maximal abelian normal subgroup of a finite p-group G.

Suppose [G, A] is cyclic andti([G, A]) E Z(G). Then

(i) CC(CC(D)) = D and [G : CG(D)] = [D : Z(G)]for every Z(G) < D < A;

(ii) [G : Z(G)] — [G, A]2 and every faithful absolutely irreducible representation of G

is of degree [G: A],

Theorem A(i) and the first part of Theorem A(ii) are special cases of the

following:

Ti.eorem B. Let A > Z(G) be an abelian normal subgroup of a finite p-group G.

Suppose [G, A] is cyclic and ß([G, A]) < Z(G). Then CA(CC(D)) = D and

[G : CC(D)] = [D : Z(G)]for every Z(G) ^D^A.

We note that in case p > 2, the condition ß([G, A]) < Z(G) is automatically

satisfied.

In §§3 and 4 we will prove these results by applying the double centralizer

property in the theory of an Azumaya algebra B over a commutative ring (with

identity) [2, Chapter II]: CB(CB(E)) = E for every separable subalgebra E of B. In

[1], a purely group-theoretical method is given to prove that if G is a finite p-group

with cyclic commutator subgroup G' such that ñ(G') < Z(G), then CC(CC(D)) = D

for every Z(G) < D « G. In §5, we will also briefly indicate how to prove this result

by the theory of Azumaya algebras.

Finally, we remark that Theorem A(ii) generalizes [5, III, 13.7(c) and 5, V, 16.14].

G. A. How [4] has an independent proof of Theorem A(ii).
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2. Preliminaries. In this section, we will prove two easy lemmas (possibly known).

Lemma 1. Let U ¥= 1 be a cyclic subgroup of a finite abelian group V. Then V can be

embedded into the units group of a commutative ring R such that

(i) R contains the rational number field Q,

(ii) g — I is not a zero divisor for any nonidentity element g £ U < R.

Proof. First of all, Kcan be embedded into a finite homocyclic abelian group, say

A. As U is cyclic, we may assume A = Ax X A2 X • • • XAt so that Ai (1 *s i < t) is

cyclic, U *£ Ax, and \AX | = |^421= • • • — \A, \ . Let A¡ = (a,.) for K i < i. {axa2

■ • ■ a„ a2,..., a,} is a base for A. The coordinates of nonidentity elements of (a, > in

this base are nonidentity. Embed A — (axa2 ■ ■ -a,)X (a2)X • ■ ■ X(a,) into the

units group of the ring R = C © C © C © • ■ ■ © C, the direct sum of Z copies of the

complex field C. In this embedding, it is easy to see that (i) and (ii) are satisfied.

Lemma 2. Let G — (x, y) be a finite p-group with cyclic commutator subgroup G'

such that ñ(G') < Cc(x). Suppose [xp, y] = 1. Then [x, y]p = 1.

Proof. For convenience, let z = [x, y]. If p > 2, then G is regular and [xp, y] =

[x, y]p = 1. (In fact, one can prove this more directly.)

Now let p = 2. The condition [x2, y] = 1 is equivalent to zx — z~\ Assume

z £ Cc(x) and z2' £ Cc(x) with minimal r. That is r > 1 and z2' £ Cc(x). This

implies z1' ¥= 1. Now (z2')x — z~2' — zr. So z2' = 1. z2' is of order 4 and is not

in Cc(x), a contradiction. Therefore, z E Cc(x) and z2 = 1.

3. Proof of Theorem B. By Lemma 1, we may embed Z = Z(G) into the units

group of a commutative ring R such that (1) R contains the rational number field Q,

and (2) g — 1 is not a zero divisor for any nonidentity element g E [G, A] n Z. Let

(x, = 1, x2,... ,xr) be a set of coset representatives of Z in A. Denote S as a free

R-module with free basis x,, 1 < z < r. Define a multiplication on S, distributively,

as x, • Xj = axk, where xk is the coset representative of x¡Xj and a E Z ER. Clearly,

S is an Ä-algebra and A can be viewed, in the natural way, as a subgroup of units

group of S. It is easy to see that the relation ag — a for a E S, g E [G, A] Ci Z

implies a = 0.

G = G/CG(A), with elements denoted as g for g E G, acts on A by conjugation.

For convenience, we denote the action as g(x) = gxg~] for g £ G and x E A. We

may extend the action of G to S. Then G is a subgroup of Ä-automorphisms of S.

Now we may construct a new Ä-algebra B as in the classical way: First let

{tzr|g EG) be a free basis for a (left) 5-module. Define multiplication in this

module by letting (au¿)(bu¡;) = ag(¿>)zz^ for all a, b E S, g, h £ G and extending by

linearity. Of course, {x¡u^\g E G, 1 < i *£ r) is a free basis for the Ä-algebra B.

Now, we will show that B is a central separable A-algebra.

First it is easy to show that the element

1 VÏ
—=-   2   xtu= ® Mj-ix"1 £ B ® Bop
r I "I   l»S/<r Ä

geG
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is a separability idempotent for B [2, Chapter II]. So B is a separable A-algebra. For

every D K A which contains Z, let RD denote the A-subalgebra of S generated by D.

As above, it is easy to show that RD is a separable A-subalgebra of B. We claim that

CB(RD) « SCG(D), the 5-subalgebra of B generated by u¿ for g ECG(D). Suppose

z = Sjec a^Ug E CB(RD). If « £ CG(D), then there is d E D with minimal order

such that [d, A-1] ¥= 1. So [dp, «"'] = 1. By Lemma 2, [d, h~x] is of order p and

hence is in [G, /I] D Z.

2 = d~{zd= "2agd~lUgd= ^a¿d~xgdg~xui= ^a¿[d, g'x]u¡.

So aA-[a", /z-1] = a^and aA"= 0. This proves that CB(RD) < SCG(D). In particular,

we have CB(S) = CB(RA) < SCG(A) = S.

Suppose z £ Z(B) = CB(B). Then z E S. Let z = a,x, + a2x2 + • • • +arxr,

where a, E A. For fixed z, 2 < z < r, let g be an element of G with minimal order so

that [g_1, x"1] ¥= 1. Then [g-'', x"1] = 1. By Lemma 2, [g~\ x,_1] is of orderp and

hence is in [G, A] D Z.

ZM_=M.Z=   2<W,- =   2<W-¿?~,«¿ =   2"j[g~\x-']Xju¿.
j=\ 7=1 7=1

So a\g-\ x,"1] = a, and a, = 0. Therefore, z £ R and Z(5) = R. That is, 5 is a

central separable A-algebra.

We note that 5 is actually a Galois extension of R with Galois group G and

B = A(S : G) in the notation of [2, Chapter III]. Since we do not need this fact, we

will not prove it here.

Now, for every Z < D < A, by double centralizer properties in the theory of

Azumaya algebras [2, Chapter II], we have AD = CB(CB(RD)). Then

RD = CB(CB(RD)) > CB{S CG(D) ) > R(CG(CG(D)) n A).

As D = RD n A > CG(CG(D)) HA = CA(CG(D)) > D, so D = Ç^C^D)). This

proves the first result in Theorem B.

To prove the second result, let \A/Z\ = p" and \D/Z\ = pr and take a series

Z = D0 < Dx < ■ ■ ■ < Dr = D< Dr+X < ■ ■ ■ < D„ = A, with [Di+X : £> ] = P (0 < /

< «). Then

G = Cc(A,) £ CG(DX) >       > CG(D„) = CCU).

Applying CA(-) to the above series, we get the original series. So [CG(D¡) : CG(Di+x)]

- p for all i. Hence [G : CG(D)] = pr and [G : CC(D)] = [D : Z\. This completes the

proof of the theorem.

4. Proof of Theorem A and a corollary. Theorem A(i) and the first part of Theorem

A(ii) follow easily from Theorem B. Now let a be a faithful absolutely irreducible

representation of G over a field F. o maps G into M — Mat „(F), the full matrix ring

of degree n over F. Let (x, = 1, x2,... ,xr} be a set of coset representatives of Z in

A. Let {yx = 1, y2,... ,yr) be a set of right coset representatives of A in G. We first

claim that {a(x,y7) \Ki,j< r) is a linearly independent set over F and Fo(G) is a

central separable F-algebra. In fact, the proof is the same as the method we used to

prove that B is central in Theorem B. Here we omit the detail. Since a is absolutely
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irreducible over F, CM(Fo(G)) = F. Then

n2 = [M:F]=[Fo(G):F][CM(Fo(G)):F]=[Fo(G):F] = [G:Z].

This completes the proof of Theorem A.

As a corollary to Theorem A(ii) and [6, Theorem 8], we get

Corollary. Let A be a maximal abelian normal subgroup of a finite p-group G.

Suppose [G, A] is cyclic and ß([G, ^4]) < Z(G). Then all maximal abelian normal

subgroups of G are of order \ Z(G) \ [G : Z(G)]1/2. //, in addition, p > 2, then all

maximal abelian subgroups of G are of order \ Z(G) \ [G : Z(G)]1/2.

5. Finite p-groups with cyclic commutator subgroup. In this section, we will briefly

indicate how to apply the method we used in §3 to the finite p-groups with cyclic

commutator subgroup.

Theorem C [1, Theorem 2]. Let G be a finite p-group with cyclic commutator

subgroup G'. Suppose ß(G') < Z(G). Then CG(CG(D)) = Dfor every Z(G) < D < G.

Proof. As in §2, we embed Z = Z(G) into a good commutative ring R so that

g — 1 is not a zero divisor for every g £ G' n Z. Let (g, = 1, g2,... ,gs) be a set of

coset representatives of Z in G. Let this set be a free Ä-basis for an i?-module B.

Define a multiplication on B so that B forms an Ä-algebra and G can be viewed as in

the units group of B. For every Z < D < G, let RD be the Ä-subalgebra of B

generated by D. By the same method we used in §3, we can obtain that RD is a

separable A-algebra and CB(RD) = RCG(D). In particular, CB(B) = CB(RG) =

RCG(G) = R. So B is an Azumaya algebra over R. As RD is a separable i?-algebra,

we get

RD = CB(CB(RD)) = CB(RCG(D)) = RCG(CG(D)).

By taking the intersection with G, we get D — CG(CG(D)). This completes the proof.
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