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THE ENDOMORPHISM RING OF AN ARTINIAN MODULE

WHOSE HOMOGENEOUS LENGTH IS FINITE

RAINER SCHULZ

Abstract. Smalo [2] showed that the index of nilpotency of the endomorphism ring

of a module MR of finite length is bounded by the number raax{nA \AR simple),

where nA denotes the number of times AR occurs as a factor in a composition chain

of MR. We give another proof of Smalo's theorem which leads to an analogous result

for artinian modules whose homogeneous length is finite.

Let MR be a (semi-)artinian module. Then MR possesses an ascending composition

chain, i.e. a chain [Mi)j^a of submodules of MR indexed by ordinals, having the

properties M0 = 0, Ma = M, Ml+ ,/M, simple for all i < a and M} = Ui<JMi for all

limit ordinals j =£ a. The following infinite version of the Jordan-Holder Theorem

shows that any two ascending composition chains of MR are isomorphic.

Proposition 1. Given two ascending composition chains {Mj}j<¡a and {M}/<¿ of

MR, there is a bijection v: a -> b such that M¡+X/Mi s Aru(,)+1/Art)(,) as R-modules for

all i < a.

Proof. Let 5(a) and S(b) be the sets of successors of the elements in a and b.

Define a mapping v: S(a) -» S(b) by t5(z + 1) = min{k \ Mi+X E Nk + A/,} for all

z < a. Then v is well defined, as the minimum exists and is a successor ordinal < b.

Conversely, define w: S(b) -» S(a) by w(j + 1) = min{« | Nj+X E Mh + Nj). Then v

and w are inverse to each other, and Mi+X/M¿ is isomorphic to Ns^i+X)/NS(i+X)_x for

all i < a. Hence, the mapping v: a -» b, defined by v(i) — v(i + 1) — 1, has the

desired properties.

Let AR be a simple module. The A -length of MR is defined to be the cardinality of

the set {z < a \ Mi+X/Mi at AR), and the homogeneous length of MR, denoted by

t)l(MR), is defined to be the supremum of the ¿I-lengths of MR, where A runs

through a complete system of simple Ä-modules. By Proposition 1, the A -length and

the homogeneous length of MR are invariants of the (semi-)artinian module MR. We

note that, if U C MR, the A -length of M is the sum of the A -lengths of U and M/U.

Assume now MR to be artinian with bI(MR) finite. Our aim is to prove that

S = End(MÄ) is semiprimary, and that the index of nilpotency of Ra(S) is bounded

bybI(MR).
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Proposition 2. Let MR be artinian with í)l(MR) finite. Then S — End(MR) is

semiprimary.

Proof. Without loss of generality, let MR be indecomposable. Using a slight

variation of the proof of Fitting's lemma, we first show that any noninvertible f E S

is nilpotent: As MR is artinian, the equalities M = Im /" + Ker/" and Im f2" =

Im /" hold for some n E N. Assume there exists a nonzero m E Im /" n Ker/".

Let AR be any simple composition factor of mR. Then the A -length of/" (Im /") is

less than the /1-length of Im /", a contradiction. Consequently, M — Im /" © Ker /",

and/" = 0.

As all noninvertible elements of 5 are nilpotent, S is a local ring, and Ra(S) is nil.

Hence, Ra(S) is nilpotent by Fisher [1, Theorem 1.5].

Lemma 3. Let SXR be a bimodule. Let N be a subset of S with the property that for

every x E X there is a finite subset Nx of N such that r(N) n xR — r(Nx) D xR.

(r(N) denotes the right annihilator of N in X.) Then, if XR has a composition factor

isomorphic to some simple module AR, NX or r(N) does.

Proof. Let x E X with xR/K s AR. If r(N) n xR <jt K, then we are done. If not,

let r(N) n xR — r(nx,.. .,nk) n xR. Then the map g: xR -> 11,*=, n¡xR, g(xr) -

(nxxr,...,nkxr), has kernel r(N) D xR E K. Therefore, Im g has a composition

factor isomorphic to AR, hence one of the n¡xR and NX do.

Lemma 4. Let SXR be a bimodule with S semiprimary and XR artinian. Then, if XR

has a composition factor isomorphic to some simple module AR, So(sX)R does.

Proof. N = Ra(S). As XR is artinian, for every x £ X there is a finite subset Nx

of N such that r(N) n xR = r(Nx) D xÄ. By Lemma 3, #* or /-(TV) has a

composition factor isomorphic to AR. If ./VA' does, we are done by induction over the

Loewy length of SX, otherwise r(N) = So(sX) does.

Theorem 5. Let MR be artinian with i)l(MR) finite. Then S = End(MR) is

semiprimary, and the index of nilpotency of N — Ra(S) is less than or equal to

f)I(MJ.

Proof. The first assertion was proved in Proposition 2. Consider now the

ascending Loewy chain 0 C r(N) ■ ■ ■ r(Nh~l) E r(Nh) = M of SM. The index of

nilpotency of N equals h, because SM is faithful. Let AR be a simple composition

factor of M/r(Nh~]). If X' = M/r(N¡) (i = 0,...,h - I), then, by Lemma 4, the

module So(sX')R = r(Ni+l)/r(N') contains a simple composition factor isomor-

phic to AR for i = 0,... ,h — 1, and the second assertion is proved.

As a corollary of Theorem 5, we obtain Smalo's theorem as cited in the abstract.
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