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RULED FUNCTION FIELDS

JAMES K. DEVENEY

ABSTRACT. Let L = Li(n) = L2(i2) D K. where ij is transcendental over

Li, and L¿ is a finitely generated transcendence degree 1 extension of K, i =

1,2. If the genus of L\¡K = 0, then L\ and Li are if-isomorphic. If the

genus of Li/K > 0, then L\ = L% and moreover L\ is invariant under all

automorphisms of L/K. A criterion is also established for a subfield of a ruled

field L to be ruled.

Let L be a finitely generated extension of a field iv". L is said to be ruled over

K if there exists an intermediate field Lx and an element Xx transcendental over

Lx such that L = Lx(xx)- The Zariski problem [6] asks: If L = Lx(xx) — L2(x2)

is ruled in two ways over K, must Lx and Li be if-isomorphic? The answers to

some special cases of the 1-dimensional problem were announced in [6] and here we

provide a complete affirmative answer for the 1-dimensional case. Henceforth, we

assume the transcendence degree of L over ii is 2. If L\ is an intermediate field

of L/K of transcendence degree 1 over K, the genus of Lx/K is by definition the

genus of Lx over the algebraic closure of K in Lx.

The proof of the one dimensional case is achieved by examining the possibilities

for L to be ruled over two distinct subfields Lx and L2. If Lx nL? = K, then Lx

and L2 must be of genus 0. This leads to the result that if L = Li(xx) D Lx D K

with Xx transcendental over Lx and the genus of Lx/K is positive, then Lx must

be invariant under all automorphisms of L/K. This result is then used to establish

sufficient conditions for a subfield of a ruled field to be ruled (K not necessarily

algebraically closed). Recall, L is regular over K means L is separable over K, and

K is algebraically closed in L.

PROPOSITION 1. Suppose L = Li(xi) = L2(x2) D K where Xi is transcendental

over Li, and Li is a finitely generated transcendence degree 1 extension ofK, i — 1,2.

IfLxC\L2 = K, then Lx and L2 are K-isomorphic genus 0 extensions ofK.

PROOF. Since each L¿ is algebraically closed in L, the algebraic closure of K in

L is contained in each L¿. Thus K is algebraically closed in L since LxC\Ia = K.

By [4, Theorem 1.1, p. 1304], there exists a unique minimal intermediate field L*

over which L is separable. Since L is separable over Lx and L2> L* E Lx n L2.

Thus L* = K, i.e., L is separable over K. Thus each L¿ is separable, hence regular,

over K. Since Lx C\L2 = K, we have Lx (/. L2; and therefore some element of

Lx is transcendental over L2. Since the transcendence degree of Lx/K is 1, a

transcendence basis for Lx/K remains independent over L2, i.e., Lx and L2 are free

over K. By [5, Theorem 3, p. 57], Lx and L2 are linearly disjoint over K. Now,

L2(x2) 2 L2L1 D L2, and hence by Luroth's theorem, L2L1 is simple transcendental
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over L2. Thus L2L1 is of genus 0 over L2. By [3, Theorem 2, p. 132], Lx/K is of

genus 0. By a symmetric argument, L2/K is also of genus 0.

Recall that a genus 0 extension Lx of a finite field K is pure transcendental.

One sees this as follows: since Lx has a divisor of degree 1 [3, Theorem, p. 148] and

since the genus is 0, the corollaries to the Riemann-Roch theorem [3, p. 40] show

this divisor must be integral, hence a prime divisor of degree 1, and hence Lx/K

is simple transcendental [3, Theorem, p. 50]. Thus if K is finite, Lx and L2 are

simple transcendental extensions of K, and hence are isomorphic.

If K is infinite, [7, Lemma 1, p. 209] shows Lx is /¿"-isomorphic to a subfield of

Z/2, and Z/2 is if-isomorphic to a subfield of Lx. If Lx is simple transcendental over

K, then so is L2 by Luroth's theorem. If Lx is not simple transcendental over K,

then [1, Corollary 11.3, p. 42] shows Lx and L2 are if-isomorphic.    Q.E.D.

It should be noted that if L\ is a nonrational genus 0 function field over

if (char iv" ^ 2) and L2 is a if-isomorphic copy of Lx, then L2Li, the free join

of Lx and L2, will be ruled over both Lx and L2 [1, p. 41].

THEOREM 2. Suppose L = Lx(xx) = L2(x2) D K where x¿ is transcendental over

Li, and Li is a finitely generated transcendence degree 1 extension of K, i = 1,2.

Then Lx and L2 are K-isomorphic.

PROOF. It suffices to show they are isomorphic over their intersection, which

contains K. If their intersection is algebraic over K, then Proposition 1 applies. If

it is not algebraic over K, then each of L\ and L2 must be the algebraic closure in

L of their intersection. Thus they are equal in this case.

THEOREM 3. Suppose L = Lx(xx) D LxD K where Xx is transcendental over Lx

and Lx is a finitely generated transcendence degree 1 extension ofK. Assume the

genus of Lx/K > 0. Then Lx is invariant under any K-automorphism ofL.

PROOF. Let a be a if-automorphism of L. Then L = Lx(xx) = L"(if ). Since

Lx/K is not of genus 0, Proposition 1 shows Lx OL" cannot be algebraic over

K. But then Lx and L" are both the algebraic closure of Lx nL° in L, i.e., Lx =

L?.    Q.E.D.
If L is ruled over it", must an intermediate field F with [L : F] < 00 also be

ruled over it"? If if is algebraically closed of char 0, [2, Proposition 2, p. 106]

shows the answer is yes. For K not algebraically closed (but still of char 0),

the answer is no. An example is given in [8, p. 330]. There, K = C(p), L =

C(n,v,w) where {p,,v,w} is algebraically independent over C. A subfield F with

\C(ß,v,w) : F] = 2 is constructed with F not ruled over C(¡j). Actually, [2] shows

F is not pure transcendental over C(p). However, if F were ruled, then F would be

pure transcendental by the generalized Luroth theorem [6]. However, we can use

the results of this paper to get an affirmative answer in some cases.

THEOREM 4. LetL = Lx(xx) D LxD K where Lx is a finitely generated extension

of K of transcendence degree 1 and positive genus with xx transcendental over Lx-

Let G be a finite group of K-automorphisms of L and let F be its fixed field. If \G\

is odd, then F is also ruled over K.

PROOF. Since Lx is invariant under the action of G by Theorem 3, it follows

from [8, Theorem 4, p. 322] that F is pure transcendental over FC\Lx-
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