RULED FUNCTION FIELDS

JAMES K. DEVENEY

ABSTRACT. Let $L=L_1(x_1)=L_2(x_2)\supset K$ where x_i is transcendental over L_i , and L_i is a finitely generated transcendence degree 1 extension of K, i=1,2. If the genus of $L_1/K=0$, then L_1 and L_2 are K-isomorphic. If the genus of $L_1/K>0$, then $L_1=L_2$ and moreover L_1 is invariant under all automorphisms of L/K. A criterion is also established for a subfield of a ruled field L to be ruled.

Let L be a finitely generated extension of a field K. L is said to be ruled over K if there exists an intermediate field L_1 and an element x_1 transcendental over L_1 such that $L = L_1(x_1)$. The Zariski problem [6] asks: If $L = L_1(x_1) = L_2(x_2)$ is ruled in two ways over K, must L_1 and L_2 be K-isomorphic? The answers to some special cases of the 1-dimensional problem were announced in [6] and here we provide a complete affirmative answer for the 1-dimensional case. Henceforth, we assume the transcendence degree of L over K is 2. If L_1 is an intermediate field of L/K of transcendence degree 1 over K, the genus of L_1/K is by definition the genus of L_1 over the algebraic closure of K in L_1 .

The proof of the one dimensional case is achieved by examining the possibilities for L to be ruled over two distinct subfields L_1 and L_2 . If $L_1 \cap L_2 = K$, then L_1 and L_2 must be of genus 0. This leads to the result that if $L = L_1(x_1) \supset L_1 \supset K$ with x_1 transcendental over L_1 and the genus of L_1/K is positive, then L_1 must be invariant under all automorphisms of L/K. This result is then used to establish sufficient conditions for a subfield of a ruled field to be ruled (K) not necessarily algebraically closed). Recall, L is regular over K means L is separable over K, and K is algebraically closed in L.

PROPOSITION 1. Suppose $L = L_1(x_1) = L_2(x_2) \supset K$ where x_i is transcendental over L_i , and L_i is a finitely generated transcendence degree 1 extension of K, i = 1, 2. If $L_1 \cap L_2 = K$, then L_1 and L_2 are K-isomorphic genus 0 extensions of K.

PROOF. Since each L_i is algebraically closed in L, the algebraic closure of K in L is contained in each L_i . Thus K is algebraically closed in L since $L_1 \cap L_2 = K$. By [4, Theorem 1.1, p. 1304], there exists a unique minimal intermediate field L^* over which L is separable. Since L is separable over L_1 and L_2 , $L^* \subseteq L_1 \cap L_2$. Thus $L^* = K$, i.e., L is separable over K. Thus each L_i is separable, hence regular, over K. Since $L_1 \cap L_2 = K$, we have $L_1 \not\subset L_2$; and therefore some element of L_1 is transcendental over L_2 . Since the transcendence degree of L_1/K is 1, a transcendence basis for L_1/K remains independent over L_2 , i.e., L_1 and L_2 are free over K. By [5, Theorem 3, p. 57], L_1 and L_2 are linearly disjoint over K. Now, $L_2(x_2) \supseteq L_2L_1 \supset L_2$, and hence by Luroth's theorem, L_2L_1 is simple transcendental

Received by the editors October 15, 1981 and, in revised form, January 29, 1982. 1980 Mathematics Subject Classification. Primary 14J25; Secondary 12F20. Key words and phrases. Ruled field, genus.

over L_2 . Thus L_2L_1 is of genus 0 over L_2 . By [3, Theorem 2, p. 132], L_1/K is of genus 0. By a symmetric argument, L_2/K is also of genus 0.

Recall that a genus 0 extension L_1 of a finite field K is pure transcendental. One sees this as follows: since L_1 has a divisor of degree 1 [3, Theorem, p. 148] and since the genus is 0, the corollaries to the Riemann-Roch theorem [3, p. 40] show this divisor must be integral, hence a prime divisor of degree 1, and hence L_1/K is simple transcendental [3, Theorem, p. 50]. Thus if K is finite, L_1 and L_2 are simple transcendental extensions of K, and hence are isomorphic.

If K is infinite, [7, Lemma 1, p. 209] shows L_1 is K-isomorphic to a subfield of L_2 , and L_2 is K-isomorphic to a subfield of L_1 . If L_1 is simple transcendental over K, then so is L_2 by Luroth's theorem. If L_1 is not simple transcendental over K, then [1, Corollary 11.3, p. 42] shows L_1 and L_2 are K-isomorphic. Q.E.D.

It should be noted that if L_1 is a nonrational genus 0 function field over $K(\operatorname{char} K \neq 2)$ and L_2 is a K-isomorphic copy of L_1 , then L_2L_1 , the free join of L_1 and L_2 , will be ruled over both L_1 and L_2 [1, p. 41].

THEOREM 2. Suppose $L = L_1(x_1) = L_2(x_2) \supset K$ where x_i is transcendental over L_i , and L_i is a finitely generated transcendence degree 1 extension of K, i = 1, 2. Then L_1 and L_2 are K-isomorphic.

PROOF. It suffices to show they are isomorphic over their intersection, which contains K. If their intersection is algebraic over K, then Proposition 1 applies. If it is not algebraic over K, then each of L_1 and L_2 must be the algebraic closure in L of their intersection. Thus they are equal in this case.

THEOREM 3. Suppose $L = L_1(x_1) \supset L_1 \supset K$ where x_1 is transcendental over L_1 and L_1 is a finitely generated transcendence degree 1 extension of K. Assume the genus of $L_1/K > 0$. Then L_1 is invariant under any K-automorphism of L.

PROOF. Let α be a K-automorphism of L. Then $L = L_1(x_1) = L_1^{\alpha}(x_1^{\alpha})$. Since L_1/K is not of genus 0, Proposition 1 shows $L_1 \cap L_1^{\alpha}$ cannot be algebraic over K. But then L_1 and L_1^{α} are both the algebraic closure of $L_1 \cap L_1^{\alpha}$ in L, i.e., $L_1 = L_1^{\alpha}$. Q.E.D.

If L is ruled over K, must an intermediate field F with $[L:F] < \infty$ also be ruled over K? If K is algebraically closed of char 0, [2, Proposition 2, p. 106] shows the answer is yes. For K not algebraically closed (but still of char 0), the answer is no. An example is given in [8, p. 330]. There, $K = C(\mu)$, $L = C(\mu, v, w)$ where $\{\mu, v, w\}$ is algebraically independent over C. A subfield F with $[C(\mu, v, w): F] = 2$ is constructed with F not ruled over $C(\mu)$. Actually, [2] shows F is not pure transcendental over $C(\mu)$. However, if F were ruled, then F would be pure transcendental by the generalized Luroth theorem [6]. However, we can use the results of this paper to get an affirmative answer in some cases.

THEOREM 4. Let $L = L_1(x_1) \supset L_1 \supset K$ where L_1 is a finitely generated extension of K of transcendence degree 1 and positive genus with x_1 transcendental over L_1 . Let G be a finite group of K-automorphisms of L and let F be its fixed field. If |G| is odd, then F is also ruled over K.

PROOF. Since L_1 is invariant under the action of G by Theorem 3, it follows from [8, Theorem 4, p. 322] that F is pure transcendental over $F \cap L_1$.

REFERENCES

- 1. S. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. (2) 62 (1955), 8-43.
- S. Arima, Double ruled surfaces and their canonical systems, J. Math. Soc. Japan 22 (1970), 105-112.
- 3. M. Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in Math., vol. 314, Springer-Verlag, Berlin and New York, 1973.
- 4. J. Deveney and J. Mordeson, Subfields and invariants of inseparable field extensions, Canad. J. Math. 29 (1977), 1304-1311.
- 5. S. Lang, Introduction to algebraic geometry, Interscience Tracts in Pure and Appl. Math., vol. 5, Interscience, New York, 1958.
- 6. M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91.
- 7. P. Roquette, Isomorphisms of generic splitting fields of simple algebras, J. Reine Angew. Math. 214-215 (1964), 207-226.
- 8. D. Triantaphyllou, Invariants of finite groups acting non-linearly on rational function fields, J. Pure Appl. Algebra 18 (1980), 315-331.

DEPARTMENT OF MATHEMATICAL SCIENCES, VIRGINIA COMMONWEALTH UNIVERSITY, RICHMOND, VIRGINIA 23284