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EXTREME POINTS AND /,(r>SPACES

NINA M. ROY

Abstract. Let X be a nontrivial real Banach space and let Ex denote the set of

extreme points of the closed unit ball B( X).

THEOREM 1. X is an l¡(T)-space if and only j/(i) span(e) is an L-summand in X for

every e in Ex and (ii) B( X) is the norm closed convex hull of Ex.

THEOREM 2. Let X = Y*. //(i) span(e) is an L-summand in Xfor every e in Ex and

(ii) (e £ Ex: e(y) =1} is countable for each y in Y with \\y\\ = 1, then X is an

lx(T)-space.

By definition, an L-projection on a Banach space X is a projection P such that

llxll = II Px II + Il x — Px II for every x in X; the range of P is called an L-summand

in X. An /,(r)-space is a Banach space which is linearly isometric to the space /,(r)

of all real-valued summable functions on some set T. Let X be a nontrivial real

Banach space and let Ex denote the set of extreme points of the closed unit ball

B(X). In this paper we prove (Theorem 1) that X is an /,(r)-space if and only if (i)

span(e) is an L-summand in X for every e in Ex and (ii) B(X) is the norm closed

convex hull of Ex. As a consequence we have (Theorem 2) that a dual space X = Y*

is an /,(r)-space if (i) span(e) is an L-summand in X for every e in Ex and (ii)

(e E Ex: e(y) = 1} is countable for each y in Y with ||y|| = 1. The proof of

Theorem 2 uses the Bishop-Phelps theorem and a result of J. Bourgain to show that

B( X) is the norm closed convex hull of Ex. Our paper concludes with an example of

a nonseparable space Y which satisfies the hypotheses of Theorem 2 and contains

uncountably many y such that llyll = 1 and [e E EY.: e(y) = 1} is countably

infinite.

In what follows, if S is a subset of a Banach space, then the convex hull of S is

denoted by co S and the linear span of S by span S. The norm closure of S is

denoted by norm-cl(5). All Banach spaces are assumed to be nontrivial.

In Lemmas 1 and 2, A" is a real Banach space for which Ex=£ 0.

Lemma 1. Let A be a nonempty finite subset of Ex such that span(e) is an

L-summand in X for every e in A, and let N = span A. Then B(N) = co(A U -A).

Proof. Since N = 2 span(e) (e E A), we have that A7 is an L-summand in X and

£„ = ^11-^ [1, Propositions 1.13 and 1.15]. Then B(N) = co(A U -A) because A

is finite.
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Lemma 2. Assume that span(e) is an L-summand in X for every e in Ex. Let \en:

n = 1,2,...} be a linearly independent subset of Ex and let xn E span(e„) for

n = 1,2,— i/2llxj| < oo, then 2x„ converges and 112 x„|| = 2l|x„||.

Proof. The proof follows from the fact that ||2*=, xn || = 2*=, II xn || for all Â:. To

obtain the induction step, observe that if P is the L-projection of X onto Nk =

2^=i span(e„), then Pek+X — 0 because ek+x $ Nk by Lemma 1. (An L-projection

maps an extreme point to itself or 0.)

Theorem 1. A real Banach space X is an lx(T)-space if and only if(i) span(e) is an

L-summand in X for every e in Ex and (ii) B(X) is the norm closed convex hull of Ex.

Proof. Suppose that X is an /,(r)-space. We may assume that X = /,(!"), where T

is a nonempty set. For each y in T let 8y be the characteristic function of (y). Then

Ex = {±8 : y E T). For each y in T, the map x h» x8y is an L-projection of X onto

span(Sy). Thus condition (i) holds (as it does in any L,-space). To prove (ii), let

x S X with ||x|| < 1. Then there is a countable set {y„} C T such that x(y) = 0 for

yë{y„} and 2»=1 |x(y„) |< 1. Then x = %»2xx(y„)ey\ For each k let xk =

2*=ix(y„)S . Then HxJI < 1 and hence by Lemma 1, xkEcoEx. Therefore

x E norm-clicofi^).

For the converse, assume that (i) and (ii) are true. Let T be a maximal linearly

independent subset of Ex. Then £^=ru -I\ To see this, suppose there is e E Ex

with eíTU -I\ Then e is a linear combination of the elements of a finite subset A

of T. By Lemma 1, e G co(^l U -A). Then e E A U -A since e G Ex, and we have a

contradiciton. If V — [ey), define an operator T: lx(T) -» Aby T(f) = 2 f(y)ey. By

Lemma 2, T is an isometry. Hence its range is closed. By (ii) and the fact that

£jf=ru -T, the range of T is dense in X. Thus T is surjective.

Theorem 2. Let Y be a real Banach space such that (i) span(e) is an L-summand in

Y* for every e in Ey, and (ii) {e E EY.: e(y) = 1} is countable for each y in Y with

llyll-1. '
Then Y* is an lx(T)-space.

Proof. By Theorem 1 it suffices to show that B(Y*) is the norm closed convex

hull of EY.. Let/G B(Y*) with f¥= 0. By the Bishop-Phelps theorem [2], the set of

those g in Y* which attain their norm is dense in Y*. Hence given e > 0, there is g in

Y* suchthat ||//||/II -g/llgllll < e and ||g|| = g(y), where y E y with ||^|| = 1.
Let F = {h G B(Y*): h(y) — 1}. Then Fy is a weak* compact convex set and

g/|| g|| G Fy. Let Ey denote the set of extreme points of Fy. Then Ey E EY, because

F is an extremal subset of B(Y*). Thus Ey = {e G £y»: e(y) — 1). Then F =

norm-cKcoiSy) because E is countable [3]. Let h E coEy with \\h — g/\\g\\ II < e.

Then HA-//||/II II < 2e, hence

||||/||A-/||<2e||/||.

Since || /1| A G co(£,, U -Ey), it follows that/ G norm-c^co^y.).

We now give an example of a space Y which satisfies the hypotheses of Theorem 2

and contains uncountably many y such that II y II = 1 and {e E EY.: e(y) = 1} is

countably infinite.



218 N. M. ROY

Let T denote the set of all ordinals less than or equal to the first uncountable

ordinal Q, and let T have the order topology. Let Y = (/ G C(T): f(ü) = 0}. Then

Y* is an L-space because Y is an Af-space; hence the first hypothesis of Theorem 2 is

satisfied. For each t in T, let the evaluation functional e, be defined on Y by

«/(/) =/(0 for all/in Y. Then EY. = {±e,: t E T, t ¥= £1). Since each function in

C(T) is eventually constant, the second hypothesis of Theorem 2 is satisfied. For

each t in T such that o> < t < ñ, let / be the characteristic function of the interval

[0, t]. Then/ G Y, ||/,|| = 1, and {e E EY.: e(ft) = 1} is countably infinite. Clearly

the set of functions / is uncountable.

In conclusion, we remark that C(T)* = lx(T) [4, p. 175], hence the converse of

Theorem 2 is false.
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