EXTREME POINTS AND $l_1(\Gamma)$ -SPACES

NINA M. ROY

ABSTRACT. Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball B(X).

THEOREM 1. X is an $l_1(\Gamma)$ -space if and only if (i) span(e) is an L-summand in X for every e in E_X and (ii) B(X) is the norm closed convex hull of E_X .

THEOREM 2. Let $X = Y^*$. If (i) span(e) is an L-summand in X for every e in E_X and (ii) $\{e \in E_X: e(y) = 1\}$ is countable for each y in Y with ||y|| = 1, then X is an $l_1(\Gamma)$ -space.

By definition, an L-projection on a Banach space X is a projection P such that ||x|| = ||Px|| + ||x - Px|| for every x in X; the range of P is called an L-summand in X. An $l_1(\Gamma)$ -space is a Banach space which is linearly isometric to the space $l_1(\Gamma)$ of all real-valued summable functions on some set Γ . Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball B(X). In this paper we prove (Theorem 1) that X is an $l_1(\Gamma)$ -space if and only if (i) span(e) is an L-summand in X for every e in E_X and (ii) B(X) is the norm closed convex hull of E_X . As a consequence we have (Theorem 2) that a dual space $X = Y^*$ is an $l_1(\Gamma)$ -space if (i) span(e) is an L-summand in X for every e in E_X and (ii) $\{e \in E_X: e(y) = 1\}$ is countable for each y in Y with ||y|| = 1. The proof of Theorem 2 uses the Bishop-Phelps theorem and a result of Y. Bourgain to show that Y is the norm closed convex hull of Y which satisfies the hypotheses of Theorem 2 and contains uncountably many Y such that Y is the hypotheses of Theorem 2 and contains uncountably many Y such that Y is an Y which satisfies the hypotheses of Theorem 2 is countably infinite.

In what follows, if S is a subset of a Banach space, then the convex hull of S is denoted by $\cos S$ and the linear span of S by span S. The norm closure of S is denoted by norm-cl(S). All Banach spaces are assumed to be nontrivial.

In Lemmas 1 and 2, X is a real Banach space for which $E_X \neq \emptyset$.

LEMMA 1. Let A be a nonempty finite subset of E_X such that $\operatorname{span}(e)$ is an L-summand in X for every e in A, and let $N = \operatorname{span} A$. Then $B(N) = \operatorname{co}(A \cup -A)$.

PROOF. Since $N = \sum \text{span}(e)$ $(e \in A)$, we have that N is an L-summand in X and $E_N = A \cup -A$ [1, Propositions 1.13 and 1.15]. Then $B(N) = \text{co}(A \cup -A)$ because A is finite.

The following result was communicated to the author by Ulf Uttersrud.

Received by the editors August 11, 1981 and, in revised form, January 6, 1982; presented to the Society, August 26, 1982 (Toronto, Canada).

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46B25; Secondary 46E30.

LEMMA 2. Assume that span(e) is an L-summand in X for every e in E_X . Let $\{e_n: n=1,2,\ldots\}$ be a linearly independent subset of E_X and let $x_n \in \text{span}(e_n)$ for $n=1,2,\ldots$ If $\Sigma ||x_n|| < \infty$, then Σx_n converges and $||\Sigma x_n|| = \Sigma ||x_n||$.

PROOF. The proof follows from the fact that $\|\sum_{n=1}^k x_n\| = \sum_{n=1}^k \|x_n\|$ for all k. To obtain the induction step, observe that if P is the L-projection of X onto $N_k = \sum_{n=1}^k \operatorname{span}(e_n)$, then $Pe_{k+1} = 0$ because $e_{k+1} \notin N_k$ by Lemma 1. (An L-projection maps an extreme point to itself or 0.)

THEOREM 1. A real Banach space X is an $l_1(\Gamma)$ -space if and only if (i) span(e) is an L-summand in X for every e in E_X and (ii) B(X) is the norm closed convex hull of E_X .

PROOF. Suppose that X is an $l_1(\Gamma)$ -space. We may assume that $X = l_1(\Gamma)$, where Γ is a nonempty set. For each γ in Γ let δ_{γ} be the characteristic function of $\{\gamma\}$. Then $E_X = \{\pm \delta_{\gamma} \colon \gamma \in \Gamma\}$. For each γ in Γ , the map $x \mapsto x\delta_{\gamma}$ is an L-projection of X onto span(δ_{γ}). Thus condition (i) holds (as it does in any L_1 -space). To prove (ii), let $x \in X$ with $\|x\| \le 1$. Then there is a countable set $\{\gamma_n\} \subseteq \Gamma$ such that $x(\gamma) = 0$ for $\gamma \notin \{\gamma_n\}$ and $\sum_{n=1}^{\infty} |x(\gamma_n)| \le 1$. Then $x = \sum_{n=1}^{\infty} x(\gamma_n) \delta_{\gamma_n}$. For each k let $x_k = \sum_{n=1}^k x(\gamma_n) \delta_{\gamma_n}$. Then $\|x_k\| \le 1$ and hence by Lemma 1, $x_k \in \operatorname{co} E_X$. Therefore $x \in \operatorname{norm-cl}(\operatorname{co} E_X)$.

For the converse, assume that (i) and (ii) are true. Let Γ be a maximal linearly independent subset of E_X . Then $E_X = \Gamma \cup -\Gamma$. To see this, suppose there is $e \in E_X$ with $e \notin \Gamma \cup -\Gamma$. Then e is a linear combination of the elements of a finite subset A of Γ . By Lemma 1, $e \in \operatorname{co}(A \cup -A)$. Then $e \in A \cup -A$ since $e \in E_X$, and we have a contradiction. If $\Gamma = \{e_\gamma\}$, define an operator $T: l_1(\Gamma) \to X$ by $T(f) = \sum f(\gamma)e_\gamma$. By Lemma 2, T is an isometry. Hence its range is closed. By (ii) and the fact that $E_X = \Gamma \cup -\Gamma$, the range of T is dense in X. Thus T is surjective.

THEOREM 2. Let Y be a real Banach space such that (i) span(e) is an L-summand in Y* for every e in E_{Y^*} , and (ii) $\{e \in E_{Y^*}: e(y) = 1\}$ is countable for each y in Y with ||y|| = 1.

Then Y^* is an $l_1(\Gamma)$ -space.

PROOF. By Theorem 1 it suffices to show that $B(Y^*)$ is the norm closed convex hull of E_{Y^*} . Let $f \in B(Y^*)$ with $f \neq 0$. By the Bishop-Phelps theorem [2], the set of those g in Y^* which attain their norm is dense in Y^* . Hence given $\varepsilon > 0$, there is g in Y^* such that $\|f/\|f\| - g/\|g\|\| < \varepsilon$ and $\|g\| = g(y)$, where $y \in Y$ with $\|y\| = 1$. Let $F_y = \{h \in B(Y^*): h(y) = 1\}$. Then F_y is a weak* compact convex set and $g/\|g\| \in F_y$. Let E_y denote the set of extreme points of F_y . Then $E_y \subseteq E_{Y^*}$ because F_y is an extremal subset of $B(Y^*)$. Thus $E_y = \{e \in E_{Y^*}: e(y) = 1\}$. Then $F_y = \text{norm-cl}(\text{co } E_y)$ because E_y is countable [3]. Let $h \in \text{co } E_y$ with $\|h - g/\|g\| \| < \varepsilon$. Then $\|h - f/\|f\| \| < 2\varepsilon$, hence

$$\| \| f \| h - f \| < 2\varepsilon \| f \|.$$

Since $|| f || h \in co(E_y \cup -E_y)$, it follows that $f \in norm-cl(co E_{Y^*})$.

We now give an example of a space Y which satisfies the hypotheses of Theorem 2 and contains uncountably many y such that ||y|| = 1 and $\{e \in E_{Y^*}: e(y) = 1\}$ is countably infinite.

218 N. M. ROY

Let T denote the set of all ordinals less than or equal to the first uncountable ordinal Ω , and let T have the order topology. Let $Y = \{f \in C(T): f(\Omega) = 0\}$. Then Y^* is an L-space because Y is an M-space; hence the first hypothesis of Theorem 2 is satisfied. For each t in T, let the evaluation functional e_t be defined on Y by $e_t(f) = f(t)$ for all f in Y. Then $E_{Y^*} = \{\pm e_t \colon t \in T, t \neq \Omega\}$. Since each function in C(T) is eventually constant, the second hypothesis of Theorem 2 is satisfied. For each t in T such that $\omega \leq t < \Omega$, let f_t be the characteristic function of the interval [0, t]. Then $f_t \in Y$, $||f_t|| = 1$, and $\{e \in E_{Y^*}: e(f_t) = 1\}$ is countably infinite. Clearly the set of functions f_t is uncountable.

In conclusion, we remark that $C(T)^* = l_1(T)$ [4, p. 175], hence the converse of Theorem 2 is false.

ACKNOWLEDGEMENT. The author is grateful to the referee for substantially improving the results and proofs in an earlier version of this paper.

REFERENCES

- 1. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces, Part II, Ann. of Math. (2) 92 (1972), 129-173.
- 2. E. Bishop and R. R. Phelps, *The support functionals of a convex set*, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 27-35.
- 3. J. Bourgain, A note on extreme points in duals, Bull. Soc. Math. Belg. 30 (1978), 89-91. MR 81d #46014.
- 4. H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin and New York, 1974.

DEPARTMENT OF MATHEMATICS, ROSEMONT COLLEGE, ROSEMONT, PENNSYLVANIA 19010