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REGULAR OPERATOR EQUATIONS:

CONDITIONS FOR REGULARITY1

GEORGE KARAKOSTAS2

Abstract. Regular operator equations are causal equations admitting unique solu-

tions and have the property that all of their limiting equations along solutions admit

unique solutions. Sufficient conditions which guarantee that an operator equation

x = Tx is regular are given in case T is a linear or a nonlinear operator.

Introduction. Regular operator equations are causal equations with unique solu-

tions and such that all of their limiting equations along solutions admit unique

solutions. In this paper we give sufficient conditions which guarantee that an

operator equation

(*) x = Tx

is regular. Conditions for uniqueness of the solutions of causal operator equations of

the form (*) have been suggested by Neustadt [7] but such conditions are not enough

for regularity. Furthermore there is the problem of uniqueness of the solutions of the

limiting equations of (*) (whenever such equations exist) as they were defined in [5].

(We shall refer to the basic definitions in §1.) Sell first discussed this problem in case

(*) is generated from the nonautonomous ordinary differential equation x = f(x, t),

see [8]. Namely, Sell investigated when such a function / is "regular" (in the

terminology of [8]). The hypothesis of regularity was also used in [1] (but under a

weaker sense of the word). In [6], where Volterra integral equations are studied, a

uniqueness assumption inherited by the limiting equations along solutions is essen-

tial.

Our idea applied here is rather simple and is inspired from an analogous one of

Sell [8]: a Lipschitz condition imposed on the original operator is inherited by the

translations of the operator along any function, as they were defined in [4]. Thus

such a Lipschitz condition also governs any limiting operator. The uniqueness will

follow from the basic Lemma 2.6. In the case of linear causal operators a more

intrinsic sufficient condition guarantees regularity (Theorem 2.1).

1. Some basic preliminaries. We start with some basic definitions and notation,

some of them borrowed from [4,5], and with some auxiliary results.
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We shall denote by C„ the space of all continuous functions <p: [0, oo) -* R"

endowed with the compact-open topology. For any JêR" the symbol C„(£) denotes

the set {rp E Cn: <p(0) = £}. For any t > 0 let C„T denote the set of all continuous \p:

[0, t] -» R" considered endowed with the sup-norm 11 ■ || T.

Following [7] we say that an operator T: Cn -* C„ is causal if for all t > 0 and x, y

in Cn we have (Tx)(t) = (Ty\t), whenever x(s) = y(s), s^t. Let T be a causal

operator and let r > 0. Then by

(7»(0 = (7?)(0,     íg[o,t],«pgc;,
where 9 is any continuation of <p on (t, 00), a new operator TT: C„T -> C„T is well

defined. Finally we recall that a set B E Cn is bounded with respect to the above

(metrizable) topology of C„ if there exists ap G C, such that | <p(/) |<p(;), t > 0, for

all <pE B.

The following lemma is obvious.

Lemma 1.1. A causal operator T: Cn '-* Cn is compact if and only if for all t > 0 the

operator TT is compact.

Let now T(v) be the set of all continuous causal operators on Cn(v) to Cn, for

every v E R", and let T denote the set Uu6R„T(d). Thus for each T E T there exists

a unique v = v(T) G R" such that T E T(v). Following [4] we say that a sequence

{Tm) E T converges to an operator T E T if v(Tm) -» v(T) and for any sequence

{<pm} c Cn such that <pm E C(v(Tm)), m= 1,2,..., and ym -* <p, for some <p G C„,

we have <p E C(v(T)) and rmqpm -> Ty.

According to [5] the limiting equations along solutions of (*) are defined via the

translations of (*) along solutions as follows: let T E T be such that there exists an

x G C(v(T)) satisfying x = Tx. Such operators are called "admissible" operators.

Let t > 0 and let x be any function in C. Denote by xT the function xT(s) =

x(t + s), s> 0. For any <p G C(x(t)) define pT x<p in C by pT xtp(i) = x(i), t < r,

and ¡uT ¿p(t) = tp(r — t), ? > t. The "translation T of T along x by t" is defined

by ^-,xm = (^111t,j:<p)t- Now the limiting equations of (*) along the solution x are the

equations of the form y = Sy, where S = Um T, x, for a certain tm -» 00 such that

{x, } converges in Cn. The function to which the sequence (x, } converges is clearly

a solution of y = Sy.

A causal operator T is called regular if (*) admits a unique solution x and all

limiting equations of (*) along x admit unique solutions.

Notice that if x = Tx admits a unique solution x then for any t > 0 the equation

u = TT xu also admits a unique solution which must be the function xT (see

[4, Example 3.7]). Moreover the uniqueness property might not be inherited by the

limiting equations along solutions. For an example see Remark 2.3. Another

example is given in [8, Example D] where the translations of the generated integral

operator can be taken along x(t) — 0, t s= 0.

2. The main results. We shall discuss the case of linear operators in T(0) first and

then the general case. We note that the norm of a bounded linear operator S:

X -» X, where AT is a normed linear space, is defined by | 51= supn„n = 1 \\Su\\. The

identity operator on Q (and on C„T(£)) will be denoted by F.
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Theorem 2.1. Let L be a linear compact operator in T(0). If there exists an M < co

such that

(2.1) \(F - Lr)']\<M,       t>0,

then the operator L is regular.

The proof of the theorem relies on the following result due to Neustadt.

Theorem 2.2 (Neustadt [7]). Consider a t > 0 and an affine operator A: C„T -> C„T

satisfying the following conditions:

(i) x,(0) = (Axx)(Q),for a certain x, G Q,

(ii) A is causal,

(iii) (¿<p)(0) = (A*)(0), for all <p, + in Q(x,(0)), and

(iv) ,4 is continuous and compact on C„T(x,(0)).

Then the equation x — Ax admits a unique solution in C„T(x,(0)).

Proof of Theorem 2.1. We extend L on C„ linearly by setting Lx<p = L(<p — <p(0)),

<p G C„. Then Lxy = Ltp, <p g C„(0), and Theorem 2.2 is applicable with x, the zero

function. Note that the causality of L implies (Lrp)(0) = 0, for all <p G C„(0). Thus

the equation u = Uu admits the unique solution u = 0, for all t > 0. (This means

that the mapping F — U: C„T(0) -* C„T(0) is a one-to-one linear mapping and, by

[2, Theorem 2, p. 57], its inverse (F — U)'x is a continuous linear operator on C„r(0)

to Q(0). So (2.1) makes sense.)

We claim that the operator equation u = Lu admits a unique solution x, thus

x = 0. Indeed, let x ^ 0 be a solution and let t > 0. Define xT(t) = x(/), / < t, and

then observe that xT = LTxT. By the above arguments we must have xT(t) — 0, t < t.

Since t is arbitrary, it follows that x(t) = 0, t > 0.

Let now u — Su be a limiting equation of x = Lx along x = 0. Then 0 = SO and

there is a sequence [tk) C R+ such that tk -» oo and L, 0 -> S. We assume that the

equation u = Su admits a nonzero solution x G C„(0). Hence there is an r > 0 such

that x(r) ¥= 0. By the linearity of S we can assume that \\xr\\ r — 1, where, recall that

xr is the restriction of x on [0, r]. Since ||xr — 5rxr||r = 0, there exists a term t of

the sequence {tk} such that

(2.2) ||x'-(L,,0x)r|lr<l/2M,

where M is a number satisfying (2.1). We notice that x G Cn(v(S)) = C„(0) =

C„(v(Ls0)), for all s > 0. Set y = u¡0x and t = t + r. Then clearly ||yT||T = ||xr|lr

= 1 and

Wxr - (L,i0*)rHr=   sup   \x(s)-(Ltfix)(s)\=   sup   \y(s)-(Ly)(s)\
j£(0, r] s£[0,t]

= Il f - LYK^\ (F - LT1 |-'||yT||T =| (/T - LT)-' I"1.

Thus by (2.1) we get ||xr - (L,0x)r|lr > \/M, which contradicts (2.2). Therefore

x = 0 and the proof of the theorem is complete.

Remark 2.3. If compactness is preserved in taking limits of a sequence of

translations of L along the function x = 0, then by Theorem 2.2, L would be a



222 GEORGE KARAKOSTAS

regular operator. From this fact and since the identity operator is not regular, it

follows that the linear operator

(L<p)(t) = t f'e-'l'-Ms) ds,       <p E C„(0),

must not satisfy the condition (2.1). Notice that Lt0 -* I, the identity on Cn (see [4]).

We shall check it by following a different way. Consider the sequence of functions

wJt), t G [0, m], m = 1,2,..., defined by

/ \       f °. Km— I,
wA t)={ ,, ^ , ,      i      m = 1,2,_
Tmv /      |(-m+l,     tE(m-\,m\, '   '

We then observe that \\<pm\\m = 1 and ||(/m - Lm)<pm\\m < \/(m - 1). Therefore

there does not exist any M E (0, oo) such that (2.1) is satisfied.

An operator R: C, -> Cx is called increasing if (Rq)(t) < (Rp)(t), t > 0, whenever

q(t) <p(i). t>0.lt is obvious that if R is linear, then R is increasing if and only if

it is positive, i.e., (Rp)(t) > 0, t > 0, whenever p(t) > 0, t > 0.

Theorem 2.4. Let T be an admissible operator and let x be a solution of the operator

equation u = Tu. Assume that for each K > 0 there exists a positive continuous

compact linear causal operator L: Cx -» C,(0) such that

(2.3) \(Tx)(t)-(Ty)(t)\<L(\x-y\)(t),       t > 0,

for all y in Cn(v(T)) with \ x(s) — y(s) |< K, for all s > 0; where \ x — y \ is the

function \x(t) — y(t)\ , t > 0. Assume also that whenever a sequence {(x,, Ttx)}

converges in C„XT then [Lt 0} is precompact. If L satisfies the condition (2.1) for a

certain M < oo, then the operator T is regular.

Remark 2.5. The local Lipschitz condition (2.3) is inspired by an analogous

condition given in [8] concerning nonautonomous ordinary differential equations.

To prove the theorem, we need the following lemma.

Lemma 2.6. Suppose that an operator L is as in the preceding theorem. Then for any

operator N in the (sequential) closure of the set {Ll0: t 3= 0} the relation

(2.4) 0 = q(0)*Zq(t)<(Nq)(t),        t> 0,

implies that q(t) = 0, t > 0.

Proof. We first observe that, for any t > 0, the operator Lt0 is defined on C,(0),

it is causal, and for any t > 0 the operator Ul0: Cx(0) -» C[(0) is linear, positive,

bounded, compact (by Lemma 1.1) and satisfies the condition

(2.5) |(r-L;,0r'|<A/,

where M is a constant satisfying (2.1). Let r > 0 be fixed and let R — Lr0. We claim

that the operator R has an extension R on C, to C,(0) such that for all t > 0 the

operator RT: C\ -* C,(0) is causal, linear, positive, bounded, compact and satisfies

(2.5).
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Indeed, let t > 0 and let <p G C,T. For any integer k with kr > 1 define a function

<Pk S CtfO) by

Mo,        t>i/k,   t<r
\T        \kt<p(\/k),    t< \/k,

Set zk(t) = pr0<pk(t), t E [0, t + /■]. Then {z^.} is bounded in CxT+r and by the

compactness of LT+r, the sequence {LT+rzfc} has a limit point t/> in CxT+r(0). If

tp(O) = 0, then, for all k, we can verify that

(2.6) ||LT+^-LT>ri0rp||^|L^|J|m(I)| + ^sup Jrp(I) -v(»|)

which tends to zero, as k -* oo. Thus 4> = LT+rur 0<p. Suppose that <p(0) ¥= 0. We shall

show that t/> is the unique limit point of {Lr+rzk}, thus by the monotonicity of LT+r,

\p is its limit. To do this, assume that {zn }, [zm } are two subsequences of {zk} with

LT+rzn -> i¿< and Lz+rzm <•* i//,, for a certain if, G C¡+r(0). We can assume that

nk+x > mk> nk, for all k. Thus for all large k and all / ë [0, t + r] we have

*nÀ+1(0 >*«,(') >*„t(0, if <p(°)>0 and V+1(0<W)<*„/0, if <p(0)<o.
Since LT+r is increasing we can easily get that \p = \px. Thus \p is unique, namely,

4> = lim LT+rzk. So we can define an operator RT: C{ •* CXT by setting RT<p = \pr =

lim LTr$r(pk and tpj. is defined via <p as above. By (2.6) it follows that Rr(p — RTcp, for

all q> E C {(0), thus RT is an extension of RT on C\. The remaining properties, which

we earlier promised Rr would have, can easily be checked by using the correspond-

ing properties of the operator Rr. Now by the causality of RT, for all t > 0, the type

(i?<p)(0 = (RVX0> t > 0, t =s t, with <pT(t) = <p(t), t < t, defines a causal operator

R: Cx -» C,(0) with the desired properties and our claim is proved.

Let ./V be an operator which satisfies the requirements of the lemma and let q be a

function in C,(0) satisfying (2.4). By Theorem 2.1 the operator L is regular and

therefore the equation

(2.7) e = r + Ne,

where r = Nq — q, admits a unique solution, the function e — -q. Let (?J C R+ be

a sequence such that L, 0 -» TV, as k -» oo. Let L, 0 be the extension of L, 0 on C,

obtained by the preceding manner. Fix a t > 0 and set rT(t) = r(t) = (Nq)(t) —

q(t),t G [0, t]. Then Theorem 2.2 applies to the equation

u = rT + - + L7hfiu,       /c = 1,2,...,

(with x, = \/k) and ensures that it admits a unique solutionpk in C¡(\/k) given by

(2.8) pk=(F-Ltkfi)~X^ + \y       k=\,2,....

Since r(t)+ l/k>0, for all t E [0, t], by Theorem 4.3 in [7], we conclude that

pk(t) > 0, for all t E [0, t] and k— 1,2,_On the other hand if eT is the restriction

on [0, t] of the solution e of (2.7), we claim that

(2.9) Pk^eT,     as ü:-+oo.
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Indeed, by (2.5), (2.7) and (2.8) we get

WPk + (F - TVT) V

(F-Ùtkfiy\z-(F-N*)-Xr

(F-Uíkfí)-\Z-(F-N*yxr^

+ ('-^r'(i)
+ M-k.

such that | x(i) — y(s) |< K, s E [0, t]. Then we have | x(s) — yx(s)

s > 0. We set q(t) =\x(t) - yx(t) \ , t > 0. Then by (2.3) we get q(t)

which tends to zero as k -> oo. Hence (2.9) is true. Now we see that

0 > -q(t) = £(t) = lim pk(t) >0,       / G [0, t],

namely q(t) = 0, t E [0, t]. Since t is arbitrary the proof of the lemma is complete.

Proof of Theorem 2.4. We shall first prove that x is the unique solution of the

equation u = Tu. To do this, let y be another solution and let t > 0. We set

yx(t) = y(t), t < t, yx(t) = y(r) — x(t) 4- x(t), t > r. Let K be a positive number

K for all

(LKq)(t),

t > 0, for an operator LK satisfying the conditions stated in the theorem. Since

q(0) = 0, by Lemma 2.6, we conclude that q(t) — 0, / > 0. Since t is arbitrary we

have x—y, namely the equation u = Tu admits the unique solution x.

Let (x, S) be a point in the (sequential) closure of {(x(, T, x): t > 0}. To prove the

theorem it is enough to show that S satisfies a condition similar to (2.3), for, by

Lemma 2.6, and the preceding argument, it follows that x is the unique solution of

u = Su. Let y be in C„(x(0)) = C„(v(S)) with | x(s) - y(s)\< K,s^0, for a certain

positive K. Let also {/„} be a sequence in R+ such that Tt -» S and xr -* x.

Setting y"(t) = (1 - e-"')[y(0 - x(i)] + x(tn + t), t > 0, n = 1,2,..., we observe

that y"(0) = x(r„), y" -* y, as n -> oo and |p/njXx,n(i) - p,n xy"(i) |< AT, for all

» = 1,2,... and s > 0. Applying (2.3) we get

|(r,n>xxj(0 - (riniXy«)(0|

= |(7)i,iiiJ(JciJ(/I, + 0 - {Tp^xy")(t„ + t)\

(2-!0) <L(|pín,xx,n-pín,;ty"|)(/M + r)

= L(plnfl\xl„-y"\)(tn + t)

= L,ni0(|x(fi-y',|)(i),       n= 1,2,..., r> 0.

where L is an operator which corresponds to K and satisfies the inequality (2.3). By

our assumption on the sequence [L, 0} we can assume that there exists an operator

TV such that L, 0 -» TV. Therefore by (2.10) we obtain

(2.11) |(Sx)(/)-(Sy)(,)|<TV(|x-y|)(i),        t > 0,

which proves the theorem.

By using Lemma 2.6 it is also easy to prove the following theorem which would be

useful in studying stability via the limiting equations (see, e.g. [1,3]).
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Theorem 2.7. Let T be an operator in T. Assume that for each K > 0 there is an

operator L as in Theorem 2.4 such that (2.3) holds for all x, y in Cn(v(T)), with \x(t)\ ,

\y(t) |< K, t > 0. Assume also that L satisfies (2.1) for a certain M > 0 and that the

set {Ll0: t s= 0} is precompact. Then for any operator S such that S = lim Tt , for a

certain sequence [tk}ER+ and {yk} E Cn(v(T)), with \yk(t)\<a, t > 0, k =

1,2,..., a > 0, the operator equation u — Su admits at most one solution.

Proof. It is enough to show that S satisfies an inequality similar to (2.3). This can

be easily seen by using a procedure analogous to that used for the proof of (2.11).

Then we apply Lemma 2.6 again.

Remark 2.8. When we say that the set {L,0: t * 0} is precompact we mean that

whenever {tm) is a sequence in [0, oo) the sequence (L, 0} has a subsequence which

converges to a continuous causal operator on C,(0) to C,(0).

References

1. Z. Artstein, Uniform asymptotic stability via the limiting equations, J. Differential Equations 27 ( 1978),

172-189.

2. N. Dunford and J. T. Schwartz, Linear operators. Part I, Interscience, New York, 1958.

3. G. Karakostas, Asymptotic behavior of causal operator equations, Ph. D. dissertation, The Weizmann

Institute of Science, Rehovot, Israel, 1979.

4._, Causal operators and topological dynamics, Ann. Mat. Pure Appl. (to appear).

5._, Limiting and full limiting equations of causal operator equations (to appear).

6. R. K. Miller and G. R. Sell, Volterra integral equations and topological dynamics, Mem. Amer. Math.

Soc. No. 102, 1970.

7. L. W. Neustadt, On the solutions of certain integral-like operator equations. Existence, uniqueness and

dependence theorems, Arch. Rational Mech. Anal. 38(1970), 131-160.

8. G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans.

Amer. Math. Soc. 127 (1967), 241-262.

Department of Mathematics, University of Ioannina, Ioannina, Greece


