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ON LINE INTEGRALS OF RATIONAL FUNCTIONS

OF TWO COMPLEX VARIABLES

E. AZOFF, K. CLANCEY AND I. GOHBERG1

Abstract. Let y be a simple rectifiable arc in the complex plane and r(z, w) a

rational function of two complex variables. Set ry(z) = fy r(z, w) dw. The natural

domain of ry has countably many components, and ry may vanish identically on

infinitely many of these. It is shown however that unless y spirals in to one of its

endpoints, only finitely many zeros of ry are isolated.

0. Introduction. Let y be a rectifiable curve in the complex w-plane C„.. If

(0.1) r(z,w)=^\
q(z,w)

is a rational function which is the quotient of the relatively prime polynomials

p(z, w),q(z,w) in the two complex variables z, w, then on the domain

(0.2) %{r)= {zECz\q(z,w)=£0,wEy}

we may define the analytic function

(0.3) ry(z)= (r(z,w)dw.
Jy

When y is a Jordan curve, the residue theorem shows that ry is a continuous

algebraic function on $T(r), and consequently, all but finitely many of the zeros of ry

lie in components on which it vanishes identically. This result was presented in [1],

where it was used in studying certain finite rank perturbations of matrix multiplica-

tion operators. These perturbation results find applications in the theory of one

dimensional singular integral operators along contours in the complex plane.

In trying to extend such perturbation results to the case of nonclosed curves, it

became necessary to investigate the zero sets of ry for general rectifiable curves. We

do this in the present paper, obtaining the following as our main result. We use the

term arc to mean a simple curve.

Theorem 1. Suppose y is a rectifiable arc and r = r(z, w) is a rational function of

the two complex variables z, w. Let ry be the analytic function defined by (0.3) on the

domain $y(r) given in (0.2). If y does not spiral in to either of its endpoints, then only

finitely many of the zeros of ry can be isolated.
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The new feature introduced by considering nonclosed curves is the appearance of

logarithmic singularities for ry. By not allowing y to spiral in to its endpoints, we

force these logarithms to have bounded imaginary parts, and the proof of Theorem 1

can be made to depend on a property of such logarithms. On the other hand, when y

does spiral in to an endpoint, the logarithmic singularities of r can have unbounded

imaginary parts, and the conclusion of Theorem 1 can fail. This dichotomy struck us

as an interesting function theory result, and we decided to separate the story on the

zeros of ry from its applications presented in [2].

The structure of the remainder of the paper is as follows. In §1, the necessary

preliminaries on logarithms are presented. The proof of Theorem 1 is presented in

§2, and in §3, a special arc is constructed to demonstrate what can happen when y

does spiral in to an endpoint. In the final section of the paper, we exploit the proof

of Theorem 1 to get an explicit local representation for ry.

The authors wish to thank Domingo Herrero for a time-saving conversation

concerning the example in §3; we would also like to acknowledge the expository

suggestions of both the referee and editor.

1. Preliminaries. In this section, we discuss the statement of Theorem 1 and

establish some preliminary material for its proof. We begin by pointing out that the

domain $y(r) can have infinitely many components, and the theorem makes no

assertion concerning the nonisolated zeros of ry. Indeed, the following example

exhibits a smooth arc y for which ry vanishes identically on infinitely many of these

components.

Example 1. Let y: [- 1,1] -> C by

[t if-Kr<0,
v(/1 =  i a TT
Y()      j' + "4sin7     if0<<<!,

and take r(z, w) — \/(w + z) + \/(w — z) + tri. The domain $Y consists of all

z E C for which neither z nor — z lies on the trace of y. Thus a typical component of

<ï>y is bounded by an arch of the form y |[1/(n+i),i/„] and a line segment on the x-axis.

Let«:[-l,l]-»Cby

*m_Í-y(0   if-i^<o,
bKt)     \y(t)       if0</<l.

Then 8 is a closed curve and an easy change of variables shows that

ry(z) = 2m+ [(—1— + —— )dw.
yK  ' Js\ w + z      w — z )

Now the latter integral is ±2iri, depending on which quadrant contains the

(bounded) component in which z lies. In particular, the set of components of <J>Y(r)

on which ry vanishes identically is neither finite nor cofinite.

As usual, a branch of the logarithm function defined on a domain fl in the

complex sphere C¡ = C? U {oo} will mean an analytic function L defined on Ü, and

satisfying expL(f) = f (f G Q). If T denotes an arc joining the points 0 and oo in
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Cj and f = 1 is not on T, then we will denote by Lr the branch of the logarithm

function on Cf \ T satisfying Lr(l) = 0.

Given an arc y in Cw with initial point a and terminal point b, we will use the

notation T for the image of y in Cf under the Möbius transformation f(w) =

(b — w)(a — w)~l, and define ly = LT ° f. We will say that y spirals in to an

endpoint if the imaginary part of LT is unbounded. The terminology is appropriate in

the sense that arcs which conform to one's intuitive notion of (direct) spiraling

towards an endpoint do satisfy the condition; on the other hand, the formal

definition also includes arcs which do too much 'meandering' to fit the Stereotypie

picture. In any case, Theorem 1 applies to a large class of arcs, including all smooth

ones. (We follow the usual convention of calling a curve smooth if it can be

reparameterized by a C1 function.)

When the arc y is rectifiable, we have

<■■" (¿=Mgj=!,W.
The proof of Theorem 1 will be based on the following result. We follow the usual

conventions concerning the domains of compositions and algebraic combinations of

functions, so that as in Example 1, the function A of the proposition may vanish

identically on infinitely many components of its domain. Note for future reference

that taking g, to be constant gives A a meromorphic summand.

Proposition 1. Let /,,...,/„ and gx,...,gn be meromorphic functions defined in a

neighborhood of z = 0. Suppose Lx,...,Ln are branches of the logarithm function with

bounded imaginary parts. Then there is a neighborhood of zero in which the function

(1.2) A(z) = ífjizlLjigjiz))
j=i

has only finitely many isolated zeros.

Proof. Let {zk}f=x be a sequence of zeros of A converging to zero. It suffices to

show that A must vanish on a neighborhood of some zk.

Write gj(z) = zmihj(z), where wi • is an integer and hj is analytic at zero with

hj(0) ¥= 0. Choose a half-line joining 0 to oo disjoint from {zk}f=x and {A-(0)}"=1.

Let L0 be a branch of the logarithm function on the complement of this half-line.

Then for each/, Lj(gj(z)) and L0(hj(z)) + mjL0(z) have the same derivative. Since

the logarithms involved have bounded imaginary parts, the differences between these

functions can take on only a finite number of values. Thus we can find an (in general

disconnected) open set U containing a subsequence of the sequence {zk}f=x such

that
n

Kz) =  2 fj(z)[L0{hj(z)) + mjL0(z) + 27T//J,        z G U,
7=1

where the {L} are integers. Clearly, we can rewrite A in the form

A(z)=g0(z)+/0(z)L0(z),       zEU,

where/0 and g0 are meromorphic at zero.
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Suppose /0 and g0 did not both vanish identically. By multiplying A by an

appropriate power of z, we could make/0 and g0 analytic at 0, with not both of/0(0),

g0(0) equaling zero. But then the finiteness of Mm n^oafQ(z„)L0(zn) would force

/0(0) = 0, and since limz^0zLQ(z) = 0, we would have g0(0) = 0 as well. This

contradiction proves that A vanishes in U and completes the proof.

2. Proof of the main result. We proceed to the proof of Theorem 1. Let {Zj}JL\ be

a sequence of zeros for ry. The {zj)f=x have an accumulation point in the Riemann

sphere C2 which, by means of an elementary substitution, can be assumed to be

z = 0. We will complete the proof by showing that ry vanishes in a neighborhood of

some Zj.

Fix a half line H joining 0 to oo which misses the {zj)JLx. In a deleted

neighborhood of z = 0, it is possible to choose a complete set wx(z), w2(z),... ,wn(z)

of distinct root functions for the equation q(z, w) = 0, which possess expansions of

the form

m = -k

here z1/a> denotes an analytic branch of the a -th root of z defined off H.

Taking a = II"=i a-, we then have q(za, w) = cU"=x (w — Wj(za)) where c is a

nonzero constant. Note that the functions {wj(za)) are meromorphic in a neighbor-

hood of zero, and ry(z) will have only finitely many isolated zeros if and only if

ry(za) does. Thus, by substituting z — ua in r(z, w), we see there is no loss of

generality in assuming the root functions wx,...,w„ axe themselves meromorphic in a

neighborhood A of z = 0. By performing a partial fraction expansion of (the new)

r(z, ■), we obtain

dw
(2.1) ry(z) = g0(z) + f    fj(z)f—™,       zEAH #y(r),

•7=1 >j{zY

where g0, fx,... ,/„ are meromorphic at z = 0. (Some of the fj's may vanish identi-

cally.)

Applying Equation (1.1) to (2.1), we conclude that ry(z) has the form (1.2). Thus

appealing to Proposition 1, we see that ry vanishes in a neighborhood of some z-, and

the proof is complete.

Remarks. If y,,...,ym and rx,...,rm satisfy the hypotheses of Theorem 1, then

2J=1 ry has but finitely many isolated zeros; only minor variations in the above

proof are required. In particular, if y is any smooth curve, then y can be decomposed

as the finite union of simple arcs, and thus ry satisfies the conclusion of the theorem;

as the curve 8 of Example 1 shows, such a y can have infinitely many self-intersec-

tions.

3. An example. In this section, we show that the conclusion of Theorem 1 can fail

if y spirals in to an endpoint. This can be seen by taking y as in the following

proposition and r(z, w) = \/(w — z2) + \/z.

Proposition 2. There is a rectifiable arc y such that the equation Jydw/(w — z2) —

\/z has infinitely many isolated solutions.
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Proof. Our arc y will have initial point w — 1 and terminal point w — 0. The

proposition is equivalent to a statement concerning logarithms. Indeed, if T is the

image of y under the Möbius transformation f(w) = w/(w — 1), then from (1.1) we

have fydw/(w - z2) = LT(z2/(z2 - 1)). Thus the proposition can be established

by constructing a branch cut T for which y = Ç~\T) is rectifiable and the equation

zLT(z2/(z2 — 1)) = 1 has infinitely many solutions.

Let k be a positive integer, and write L0 for the principal branch of the logarithm.

Since lim.j0 zL0(z2/(z2 - 1)) = 0, for k large enough, the distance between

z[L0(z2/(z2 — 1)) + 277-ik] — 1 and 2-nikz — 1 is less than { for all z on the circle

\2Uikz — \\= {. Thus by Rouche's Theorem, for all sufficiently large k, the

equation

has a solution zk. Using the fact that \im:^Q zL0(z2 /(z2 — 1)) = 0 once again, we

see that the sequences {\k) = {z2k/(z\ — 1)} and {- \/Air2k2) are asymptotic. We

now construct T to spiral in from oo to 0 in such a way that it misses 1 and all the

{r\k), and for k sufficiently large, makes approximately one revolution about the

origin between Xk and \k+x. By exercising some care, it is thus possible to have

Lr(l) = 0 and zkLT(z\/(z\ — 1)) = 1 for infinitely many k. Finally, we note that

the convergence of 2 1/A2 allows us to make y = f~'(r) rectifiable. This completes

the proof.

Remarks. Proposition 2 remains true if \/z is replaced by any rational function

having a simple pole at 0. On the other hand, it is impossible for fydw/(w — z) to

have infinitely many points of agreement with any rational function; a formal proof

of this fact, which is somewhat intricate, is based on the intuitive idea that any T for

which the equation zLT(z/(z — 1)) = 1 has infinitely many solutions winds around

the origin too often to allow y = f~'(r)tobe rectifiable.

Finally, we remark that there is a closed y (with infinitely many self-intersections)

for which the points of agreement of jydw/(w — z2) and 1/z are precisely {\/2trik\

k = 1,2,...}. For the proof set ak = l/2-nik, bk = a2k/(a2k — 1), and construct Y so

that Lv(bk) = L0(bk) + 2ttik, k = 1,2,_The desired y is the union of ?-1(j7)

with the line segment joining 0 to 1.

4. Remarks on the local nature of ®y(r). In this section we will examine the nature

of ry and $Y(r) in a neighborhood of a point z0 not in $y(r). In such a neighborhood

one would expect the complement of ®y(r) to resemble a finite union of curves

passing through z0 and r to have an isolated logarithmic singularity at z0. Below we

will show that this is indeed the local picture for ry and indicate how the local nature

of ry can be described in terms of the root functions of q(z, w) = 0.

We assume y is a rectifiable arc and that r has the form (0.1). We write

q(z, w) = q0(z)wm + qx(z)wm~' + ■■■ +qm(z),

where q0,... ,qm are polynomials with q0 z 0.

One description of the complement of i*Y(r) = <fry(q~l) is easily obtained. Let S

be the m-sheeted Riemann surface forming the domain of the algebraic function

+ 2wik
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w — w(z) defined by q(z, w) — 0. Let it denote the projection of S onto Cz. Clearly

Czy%(r)=v(w-\y)).

We will refine this description of C2\$y(r) locally in terms of the distinct root

functions wx(z),... ,wm(z) which constitute w = w(z).

As in the proof of Theorem 1, we take z0 = 0, and assume the root functions

wx(z),.. .,wm(z) axe meromorphic at z = 0. (This involves some distortion since we

needed to make the substitution z = ua.) In a deleted neighborhood A of the origin

these root functions wx(z),... ,wn(z) have convergent Laurent expansions. We arrange

that wx,...,Wj are all of the root functions satisfying m>.(0) G y. By shrinking A if

necessary, it can be assumed that the values wd+x(z),... ,wm(z) (z G A) do not lie on

y-

From equation (2.1),

(4.1) ry(z) = h0(z) + i A,(z)/        dW z G A n %(r),
,= 1 Jy   W   —   Wj(z)

where A0, hx,...,hd are meromorphic in A with the only possible pole at z = 0.

The local nature of the integrals in (4.1) is described in the following proposition.

Proposition 3. Let y be a rectifiable arc in Cw. Suppose w — w(z) is a nonconstant

analytic function defined in a neighborhood of the origin with w(0) the initial point ofy.

In a sufficiently small neighborhood Aofz = 0, the function

dw
W(z)=f

Az)

is analytic off a collection y,,... ,yk of arcs whose only common point is their initial

point z — 0. Moreover,

(4.2) yv(z)=2iy¡(z) + g(z),     zeÛy,
/=i i=\

where g is analytic in A.

Proof. In a sufficiently small neighborhood A0 of z = 0 we can write w(z) —

[\p(z)]k, where k > 1 is an integer and A = i//(z) is conformai mapping of A0 onto a

neighborhood V of A = 0 with ^(0) = 0.

Lift y to the ^-sheeted Riemann surface for w = Xk. Let y,',... ,yk be the curves in

the plane CA which are the images of y under the A>branches of A = wx/k. The

curves y,',..., y'k intersect only at X = 0. Moreover

(4.3) /^-=£/y/(A),      A£Uy/.

Choose arcs y/',... ,yk of y,',... ,yk, respectively, such that y" is contained in V and

has initial point X = 0. Set y, = ^"'(y/')- Then in a sufficiently small neighborhood

A,ofz = 0,

(4-4) /Y((-Hz)) = /Y/(z)+g,.(z),

where g, is analytic on A, (i = 1,... ,k).
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Let A = n<=1 A, and g — gx + ■ ■ ■ +g¿. The representation (4.2) follows by

substituting (4.4) in (4.3). This ends the proof.

Corollary 1. Let y be a rectifiable arc in Cw and r(z, w) = p(z,w)/q(z, w) a

quotient of relatively prime polynomials in z, w. Suppose z = 0 is not in $y(r) and the

root functions of q(z, w) = 0 are all meromorphic at z — 0. In a sufficiently small

neighborhood A of the origin the function ry is analytic off the union of a collection of

simple curves yx,... ,y„ wi'iA initial point z = 0. Moreover,

ry(z) =f0(z) + 2 /,(*)/,,(*),       z E A n * (r),
/=!

where f0,.-.,f„ are meromorphic at zero.

Proof. The result in the corollary follows easily when Proposition 3 is applied to

each of the integrals in (4.1). In the cases where h>,(0) is not an end of y it is

necessary to write y = y+ — y_ , where y± are curves with initial point w(0). This

ends the proof.

We remark that when y is smooth the curves y,,...,y„ appearing in the last

corollary are smooth; however, if y is merely assumed to be rectifiable, then

y,,..., y„ may fail to be rectifiable. Further, the functions/0,... ,/„ and the curves

y,,... ,y„ in this corollary may be explicitly given in terms of the root functions of

q(z, w) = 0. Finally, we note that by virtue of the representation of ry given either as

in Corollary 1 or as in the proof of Theorem 1, it is clear that the only possible

accumulation points of the isolated zeros of ry are the solutions of q(z, a) = 0 or

q(z, b) = 0, where a, b are the ends of y.
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