HOLOMORPHIC MAPPINGS OF DOMAINS WITH GENERIC CORNERS

S. M. WEBSTER¹

ABSTRACT. The boundary behavior of a biholomorphic mapping f between two domains with real analytic, generic, nondegenerate corners in \mathbb{C}^n is considered. Under certain minimal regularity assumptions on f it is shown that f continues holomorphically past the boundary.

Introduction. The problem of extending a holomorphic mapping between two domains with smooth boundaries in the complex space \mathbb{C}^n has received considerable attention in recent years. In this note we consider the continuation problem for a mapping f defined on a domain which has corners of a certain kind. We shall show that f can be analytically extended by means of a reflection principle, provided it satisfies certain minimal initial regularity conditions. The main point here is that an argument due to H. Lewy, when suitably modified, gives holomorphic continuation in a much more general situation.

Let D be a domain in \mathbb{C}^n and U an open set which meets the boundary of D. Let $r^i(z)$, $1 \le i \le l$, where $1 \le l \le n$, be twice continuously differentiable real valued functions defined on U for which $dr^1 \wedge \cdots \wedge dr^l \ne 0$ and

$$(0.1) D \cap U = \{z \in U: r^i(z) < 0, 1 \le i \le l\}.$$

The manifold

(0.2)
$$M = \{z \in U: r^i(z) = 0, 1 \le i \le l\}$$

is a generic corner of D if also $\partial r^1 \wedge \cdots \wedge \partial r^l \neq 0$ on M; i.e. the complex gradients of the r^i should be independent. M is a real submanifold of codimension l. The holomorphic tangent space $H_z(M)$, $z \in M$, is the vector space of all vectors of type (1,0) annihilating the defining functions r^i at z. The condition means that H_z has complex codimension l. Any real submanifold M of \mathbb{C}^n of codimension l satisfying this condition is called a generic real submanifold. If X and Y are local sections of H(M) near z, the Levi form of M is defined by $(X,Y) \to L_z(X,Y) \equiv i[X,\overline{Y}]$, mod $H_z \oplus \overline{H}_z$. It is an hermitian bilinear form on H_z with values in $T_z \otimes C/H_z \oplus \overline{H}_z$, where T_z denotes the real tangent space of M at z. M is nondegenerate at z if the linear mapping $Y \to L_z(\cdot,Y)$ is injective on H_z .

We may now state the main result.

Received by the editors February 18, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32H99.

Key words and phrases. Biholomorphic map, reflection principle, generic submanifold, nondegenerate Levi form.

¹ Alfred P. Sloan Fellow.

THEOREM. Let D be a domain in \mathbb{C}^n with a generic real analytic corner M, and let M' be a generic analytic real submanifold with nondegenerate Levi form in \mathbb{C}^m . Suppose f is a holomorphic mapping from D to \mathbb{C}^m , which together with its first derivatives extends continuously to M, taking M into M'. If at some point z of M the differential of f induces a linear isomorphism of the holomorphic tangent spaces $H_z(M)$ and $H_{f(z)}(M')$, then f continues holomorphically to a full neighborhood of z in \mathbb{C}^n .

REMARKS. (a) It is *not* required that the hypersurfaces $r^i = 0$ be analytic. It will be clear from the proof that the requirement that D have a corner along M is too strong. However, the points of M must be accessible via suitable cones lying in D. In one complex variable there are no generic corners other than smooth curves.

- (b) The hypotheses imply that M and M' have the same holomorphic dimension. In case M is totally real it is not necessary to assume that the first derivatives of f extend continuously to M. The result then follows from the edge-of-the-wedge theorem after a change of coordinates.
- (c) The theorem and its proof given below reduce to those given by H. Lewy in [1], when n = m and M and M' are both hypersurfaces. If, in addition, M and M' are both strongly pseudoconvex and f is biholomorphic, then the theorem, which is purely local, was proved in [2] under the assumption that f is Hölder continuous with exponent $\frac{1}{2} + \varepsilon$, $\varepsilon > 0$. See also [5] and Pinchuk [3].
- 1. Reflection about a generic, nondegenerate submanifold. Let $M \subset \mathbb{C}^n$ be an analytic generic real submanifold of codimension l, $1 \le l \le n$. Choose a neighborhood U and local real analytic defining functions $r^i = r^i(z, \bar{z})$ for M as in (0.2). We may assume that the power series $r^i(z, \bar{w})$ converge for $z, w \in U$. Following [5] we define local nonsingular complex varieties Q_z of codimension l by $Q_z = \{w \in U: r^i(z, \bar{w}) = 0, 1 \le i \le l\}$. Because of the reality condition on the r^i , $w \in Q_z \Leftrightarrow z \in Q_w$. Given z near $z_0 \in M$ and a complex (n-l)-plane p nearly parallel to $H_{z_0}(M)$, we try to determine a "reflected" point $w \in Q_z$ by requiring $T_zQ_w = p$. If we set $q = T_wQ_z$, the problem is to set up an antiholomorphic involution $(z, p) \leftrightarrow (w, q)$ of pointed (n-l)-planes. p and q are elements of the complex Grassmanian Gr(n-l, n) of (n-l)-planes in \mathbb{C}^n . Gr has complex dimension l(n-l), whereas the image of $w \to T_zQ_w$ has dimension at most n-l. Thus except for the hypersurface case l = 1, p and q must satisfy some consistency condition.

We consider also the complexification of M, $M^c = \{(z, w) \in U \times U : r^i(z, \overline{w}) = 0, 1 \le i \le l\}$. With z and $\eta = \overline{w}$ as variables, it is clear that M^c is a complex submanifold of \mathbb{C}^{2n} of codimension l. There is a natural mapping π from M^c to $\mathbb{C}^n \times \mathbb{C}^n$ given by $\pi(z, w) = T_z Q_w$. π is holomorphic in z and antiholomorphic in w.

LEMMA. The mapping π is an immersion at (z_0, z_0) , $z_0 \in M$, if and only if the Levi form of M is nondegenerate at z_0 .

PROOF. This a matter of checking the definitions. We denote $\partial_a = \partial/\partial z^a$ and $\partial_{\overline{a}} = \partial/\partial \overline{w}^a$, $1 \le a \le n$. By a linear change of coordinates we may assume

(1.1)
$$\det(\partial_j r^i) \neq 0, \quad 1 \leq i, j \leq l, \\ \partial_\alpha r^i = 0, \quad 1 \leq i \leq l, l < \alpha \leq n, \text{ at } (z, \overline{w}) = (z_0, \overline{z}_0).$$

We define the operators

(1.2)
$$X_{\alpha} = \det \left[\frac{\partial_{\alpha}}{(\partial_{\alpha} r^{i})} - \left[\frac{(\partial_{j})}{(\partial_{j} r^{i})} \right] (z, \overline{w}), \right]$$

for each α , $l < \alpha \le n$, in which the $(l+1) \times (l+1)$ matrix is to be expanded across the top row. Clearly, the X_{α} are independent and annihilate the function $r^i(\cdot, \overline{w})$. They form a basis for the vectors of type (1,0) tangent to Q_w at z. A basis $X_{\overline{\alpha}}$ for the (0,1)-tangent space of Q_w at z is given by (1.2) with ∂_{α} and ∂_j replaced by $\partial_{\overline{\alpha}}$ and ∂_j , respectively. When $z = w \in M$, the X_{α} form a basis for $H_z(M)$. By (1.1) we may solve the equations $r^i(z, \overline{w}) = 0$ for z^i , $1 \le i \le l$, in terms of z^{α} , $l < \alpha \le n$:

(1.3)
$$z^{i} = z^{i}(z^{\alpha}, \overline{w}), \quad p_{\alpha}^{i} = \frac{\partial z^{i}}{\partial z^{\alpha}}(z^{\alpha}, \overline{w}), \quad \partial_{\alpha} r^{i} + \sum_{k} p_{\alpha}^{k} \partial_{k} r^{i} = 0.$$

The p_{α}^{i} are coordinates for the plane $p = T_{z}Q_{w}$. It is clear that $\pi:(z, w) \to (z, p)$ is an immersion at (z_{0}, z_{0}) if and only if the $(n - l) \times l(n - l)$ matrix of derivatives (indexed by (n - l) β 's and l(n - l) αj 's)

$$(1.4) (X_{\overline{B}}p_{\alpha}^{j})$$

has rank n-l when $z=w=z_0$. We want to show that this condition is equivalent to M having a nondegenerate Levi form at z_0 . By Cartan's formula for exterior derivative the Levi form has the coordinate representation

$$L(X,Y) = (i\partial r^{1}([X,\overline{Y}]),...,i\partial r^{l}([X,\overline{Y}]))$$

= $-i(\partial \bar{\partial} r^{1}(X,\overline{Y}),...,\partial \bar{\partial} r^{l}(X,\overline{Y})).$

We write

$$\partial \overline{\partial} r^{j}(X, \overline{Y}) = \sum \xi^{a} \overline{Y} [\partial_{a} r^{j}], \qquad X = \sum \xi^{a} \partial_{a}.$$

Since \overline{Y} is a linear combination of the $X_{\overline{\alpha}}$, and $X_{\alpha} = \partial_{\alpha}$ at (z_0, \overline{z}_0) , the nondegeneracy of the Levi form is equivalent to the matrix $(X_{\overline{\beta}}[\partial_{\alpha}r^j])$ having rank n-l. If we differentiate the last equation in (1.3) with $X_{\overline{\beta}}$ and use the fact that $p_{\alpha}^k(z_0, \overline{z}_0) = 0$ and (1.1), we see that this matrix has the same rank as (1.4). \square

Let \tilde{M}^c denote the image of π . Since π is holomorphic in $(z, \eta = \overline{w})$ and an immersion, \tilde{M}^c is a (local) complex submanifold of $\mathbb{C}^n \times \mathbb{G}^n$ of dimension 2n-l. By the reality condition on the r^i , M^c is invariant under the antiholomorphic involution $(z, \overline{w}) \to (w, \overline{z})$. This reflection induces a reflection on \tilde{M}^c via π as follows. Given $(w, q) \in \tilde{M}^c$, $(w, q) = \pi(w, z)$ for a (locally) unique z. Use equation (1.3) with argument (z, \overline{w}) to define p. It is clear that the correspondence $(z, p) \to (w, q)$ is antiholomorphic and involutive.

2. Application to holomorphic mappings. In this section we prove the theorem. Let $D \cap U$ and M be given by (0.1) and (0.2), respectively. We first make a local coordinate change in a neighborhood of the particular point $z \in M$. After a translation and rotation we may assume that this z = 0 and that $T_0(M)$ is given by $y^j \equiv \text{Im } z^j = 0$, $1 \le j \le l$, and that $H_0(M)$ is given by $z^j = 0$, $1 \le j \le l$. So z^{α} , $l < \alpha \le n$, are coordinates on $H_0(M)$, and z^{α} , $x^i \equiv \text{Re } z^j$, are coordinates on $T_0(M)$.

Locally, as a graph over $T_0(M)$, M is given by equations

in which the h^j are convergent power series about the origin which vanish together with their first derivatives when $z^{\alpha} = x^i = 0$. We define a *real* analytic local coordinate change $T: (\zeta^j, \zeta^{\alpha}) \to (z^j, z^{\alpha})$, which is holomorphic in the ζ^j when the ζ^{α} are held constant, by

(2.2)
$$T: \frac{z^{\alpha} = \zeta^{\alpha}}{z^{j} = \zeta^{j} + ih^{j}(\zeta^{\alpha}, \bar{\zeta}^{\alpha}, \zeta^{j})}.$$

It is clear that the (real) Jacobian determinant does not vanish at the origin, and that $\operatorname{Im} \zeta^i = 0$ corresponds to M. For the functions r^i defining D the sets of covectors $\{\partial r^i\}$ and $\{\partial \rho^i\}$ in the z-coordinate system have the same linear span at points of M. Since $\bar{\partial}_{\xi} z^j = 0$ at the origin of the ξ -system, $\{\partial_{\xi} r^j\}$ and $\{d\xi^j\}$ have the same span there. Since the first order approximation of D in the ξ system is the linear corner $\{d_{\xi} r^j < 0\}$, it is clear that by a complex linear change of the ξ^j , $1 \le j \le l$, D can be made to contain the wedge $W^+ = (U_1 + iV^+) \times U_0$. Here U_0 is a neighborhood of $\xi^{\alpha} = 0$ in the ξ^{α} -space, U_1 is a neighborhood of $\operatorname{Re} \xi^j = 0$ in the $\operatorname{Re} \xi^j$ -space, and V^+ is the (truncated) cone $\operatorname{Im} \xi^j > 0$, $1 \le j \le l$, in the $\operatorname{Im} \xi^j$ -space. We denote by V^- the (symmetrically truncated) cone $\operatorname{Im} \xi^j < 0$, $1 \le j \le l$, and by W^- the corresponding wedge. If $z = (z^j, c^{\alpha}) = T(\xi^j, c^{\alpha})$ and $w = (w^j, c^{\alpha}) = T(\bar{\xi}^j, c^{\alpha})$, it is clear from (2.1) and (2.2) that $\rho^j(z, \bar{w}) = 0$, and that these equations characterize the reflection $\xi^j \to \bar{\xi}^j$.

Now we use the above to extend the mapping f. Let $\eta = (\eta^j, c^\alpha)$ be a point of W^- , $\zeta = (\bar{\eta}^j, c^\alpha)$, $w = T(\eta)$, $z = T(\zeta)$. Then $z \in D$ and $\rho^j(z, \bar{w}) = 0$; i.e. $z \in Q_w$. Let $p = T_z Q_w$, z' = f(z), and $p' = df_z(p)$. As Im $\eta^j \to 0$, it follows that $z \to z_0 \in M$, and $p \to H_{z_0}(M)$, for some z_0 . Since f is C^1 and df is an isomorphism on H(M), it follows that p' is an (n-l)-plane which approaches $p'_0 = H_{z'_0}(M')$, $z'_0 = f(z_0)$. In order to reflect (z', p') by the method of §1, we must show that $(z', p') \in \tilde{M}'^c$. Let $\Psi'(z', p') = 0$ denote (local) holomorphic functions defining the complex manifold \tilde{M}'^c . Since $(z'_0, p'_0) \in \tilde{M}'^c$, we see that $\Psi'(z', p') \to 0$ as Im $\eta^j \to 0$. By construction $\Psi'(z', p')$ is an antiholomorphic function of η^j , for $\eta^\alpha = c^\alpha$ fixed, on W^- . We extend this function continuously to $W \equiv W^+ \cup W^-$ by setting it equal to 0 on W^+ . By the edge-of-the-wedge theorem (see [4]) Ψ' continues holomorphically to a full neighborhood of $(0, c^\alpha)$ in the ζ^α -space. Since it vanishes on the real axis, it is identically zero. Hence, for Im η^j sufficiently small, uniformly in c^α , $(z', p') \in \tilde{M}'^c$, and the reflected point-plane (w', p') is defined and holomorphic in $\eta^j \in W^-$, for each fixed c^α .

Thus $\eta \to w'(\eta^j, c^\alpha)$ gives a continuous extension \tilde{f} of $f \circ T$ to W. We now get an extension \tilde{F} of \tilde{f} to a full neighborhood of 0 in C^n . This is given by the following integral, formula (6), §4, of [4],

$$2\pi \tilde{F}(\zeta^{j},c^{\alpha})=\int_{-\pi}^{\pi}\tilde{f}(\Phi(\zeta^{i},e^{i\theta}),c^{\alpha})d\theta.$$

 \tilde{F} is continuous in (ζ^j, c^α) since \tilde{f} is continuous on W. It is also holomorphic on each plane $\zeta^\alpha = c^\alpha$. Set $F = \tilde{F} \circ T^{-1}$. F continuously extends f to a neighborhood of the original point of M and is holomorphic on each l-plane $\zeta^\alpha = c^\alpha$. As in [1] (or see [2]),

we can argue that F is holomorphic as follows. Let $I_c(F)$ be the complex line integral of F about a small loop c in the complex z^{α} -plane. $I_c(F)$ is holomorphic in z^j and vanishes for the open set of z^j for which $(z^j, c) \subset D$. Hence, $I_c(F) \equiv 0$, and F is holomorphic in z^{α} by Morera's theorem.

REFERENCES

- 1. H. Lewy, On the boundary behavior of holomorphic mappings, Contrib. Centro Linceo Inter. Sc. Mat. e Loro Appl. No. 35, Acad. Naz. dei Lincei, 1977, pp. 1-8.
- 2. L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305-338.
- 3. S. I. Pinchuk, On the analytic continuation of biholomorphic mappings, Math. Sb. 27 (3) (1975), 375-392.
- 4. W. Rudin, Lectures on the edge-of-the-wedge theorem, CBMS Regional Conf. Ser. in Math., no. 6, Amer. Math. Soc., Providence, R. I., 1971.
- 5. S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc., 72 (1978), 26-28.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455