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HOLOMORPHIC MAPPINGS OF DOMAINS

WITH GENERIC CORNERS

S. M. WEBSTER1

Abstract. The boundary behavior of a biholomorpbic mapping / between two

domains with real analytic, generic, nondegenerate corners in C" is considered.

Under certain minimal regularity assumptions on / it is shown that / continues

holomorphically past the boundary.

Introduction. The problem of extending a holomorphic mapping between two

domains with smooth boundaries in the complex space C" has received considerable

attention in recent years. In this note we consider the continuation problem for a

mapping / defined on a domain which has corners of a certain kind. We shall show

that / can be analytically extended by means of a reflection principle, provided it

satisfies certain minimal initial regularity conditions. The main point here is that an

argument due to H. Lewy, when suitably modified, gives holomorphic continuation

in a much more general situation.

Let D be a domain in C" and U an open set which meets the boundary of D. Let

r'(z), I <i< I, where 1 < / < n, be twice continuously differentiable real valued

functions defined on U for which dr ' A • • • Adr1 ¥= 0 and

(0.1) DH U= {z G U:r'(z)<0, 1 <i</}.

The manifold

(0.2) M= {z G U:r'(z) = 0, 1 < i </}

is a generic corner of D if also dr1 A • • • Adr' ¥= 0 on M; i.e. the complex gradients

of the r' should be independent. M is a real submanifold of codimension /. The

holomorphic tangent space HZ(M), z E M, is the vector space of all vectors of type

(1,0) annihilating the defining functions r' at z. The condition means that Hz has

complex codimension /. Any real submanifold M of C of codimension / satisfying

this condition is called a generic real submanifold. If X and Y are local sections of

H(M) near z, the Levi form of M is defined by (X,Y)-* LZ(X, Y) = i[X, Y],

mod Hz © Hz. It is an hermitian bilinear form on Hz with values in Tz ® C/Hz @ Hz,

where Tz denotes the real tangent space of M at z. M is nondegenerate at z if the

linear mapping Y -» Lz(•, Y) is injective on Hz.

We may now state the main result.
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Theorem. Let D be a domain in C with a generic real analytic corner M, and let M'

be a generic analytic real submanifold with nondegenerate Levi form in Cm. Suppose f

is a holomorphic mapping from D to Cm, which together with its first derivatives

extends continuously to M, taking M into M'. If at some point z of M the differential of

f induces a linear isomorphism of the holomorphic tangent spaces H,(M) and Hf,z)(M'),

then f continues holomorphically to a full neighborhood of z in C".

Remarks, (a) It is not required that the hypersurfaces r' = 0 be analytic. It will be

clear from the proof that the requirement that D have a corner along M is too

strong. However, the points of M must be accessible via suitable cones lying in D. In

one complex variable there are no generic corners other than smooth curves.

(b) The hypotheses imply that M and M' have the same holomorphic dimension.

In case M is totally real it is not necessary to assume that the first derivatives of /

extend continuously to M. The result then follows from the edge-of-the-wedge

theorem after a change of coordinates.

(c) The theorem and its proof given below reduce to those given by H. Lewy in [1],

when n = m and M and M' are both hypersurfaces. If, in addition, M and M' are

both strongly pseudoconvex and / is biholomorphic, then the theorem, which is

purely local, was proved in [2] under the assumption that / is Holder continuous with

exponent { + e, e > 0. See also [5] and Pinchuk [3].

1. Reflection about a generic, nondegenerate submanifold. Let M E C be an

analytic generic real submanifold of codimension /, 1 < / «S.h. Choose a neighbor-

hood U and local real analytic defining functions r' = r'(z, z) for M as in (0.2). We

may assume that the power series r'(z, w) converge for z, w E U. Following [5] we

define local nonsingular complex varieties Qz of codimension I by Qz — [w E

U: r'(z, w) = 0, 1 < I < I). Because of the reality condition on the r', w E Qz^> z

E Qw. Given z near z0 G M and a complex (n — /)-plane p nearly parallel to

Hz (M), we try to determine a "reflected" point w E Qz by requiring TZQW = p. If

we set q = TWQZ, the problem is to set up an antiholomorphic involution (z, p) *-*

(w, q) of pointed (n — /)-planes. p and q are elements of the complex Grassmanian

Gr(« — /, n) of (n — /)-planes in C". Gr has complex dimension /(«*,— /), whereas

the image of w -» TZQW has dimension at most n — I. Thus except for the iiyper-

surface case / = 1, p and q must satisfy some consistency condition.

We consider also the complexification of M, Mc — {(z, w) E U X U: r'(z, w) = 0,

1 </</}. With z and tj = w as variables, it is clear that Mc is a complex

submanifold of C2" of codimension /. There is a natural mapping 77 from Mc to

C X Gr given by ir(z, w) = TZQW. it is holomorphic in z and antiholomorphic in w.

Lemma. The mapping it is an immersion at (z0, z0), z0 G M, if and only if the Levi

form of M is nondegenerate at z0.

Proof. This a matter of checking the definitions. We denote 3a = 3/3za and

da = 3/3w°, 1 < a *£ n. By a linear change of coordinates we may assume

det(3/)*0,  1 <i,j<l.

oarl = 0,     1 < 1 < /, / < a < n, at (z, w) = (z0, z0).



238 S. M. WEBSTER

We define the operators

(1.2) A-a = det
3a

(V)'

ft)
(z,w),

for each a, I < a < n, in which the (/+ 1) X (/ + 1) matrix is to be expanded across

the top row. Clearly, the Xa axe independent and annihilate the function r'(-, w).

They form a basis for the vectors of type (1,0) tangent to Qw at z. A basis X5 for the

(0, l)-tangent space of Qw at z is given by (1.2) with 3a and 3y replaced by 3¿ and 3^,

respectively. When z = w G M, the Xa form a basis for HZ(M). By (1.1) we may

solve the equations r'(z, w) — 0 for z', 1 =s /' < /, in terms of za, I < a < n:

(1.3) z' = z'(z",w),   P'a = ^(z",w-),    3/ + SaV = 0.

The p'a are coordinates for the plane p = T2QW. It is clear that it: (z, w) r*. (z, p) is

an immersion at (z0, z0) if and only if the (n — I) X l(n — I) matrix of derivatives

(indexed by (n - l) ß's and l(n - I) ay's)

(1.4) [xpPi]

has rank n — I when z = w — z0. We want to show that this condition is equivalent

to M having a nondegenerate Levi form at z0. By Cartan's formula for exterior

derivative the Levi form has the coordinate representation

L(X,Y) = {idr\[X,Y]),...,iZr'([X,Y]))

= -i{ddri(X,Y),...,ddr'(X,Y)).

We write

_
ddrJ(X,Y) = 2taY[darJ],        X^^fdp

Since y is a linear combination of the X-, and Xa = 3a at (z0, z0), the nondegener-

acy of the Levi form is equivalent to the matrix (X^darj\) having rank n — I. If we

differentiate the last equation in (1.3) with Xß and use the fact that pk(z0, z0) = 0

and ( 1.1 ), we see that this matrix has the same rank as ( 1.4).    D

Let Mc denote the image of it. Since m is holomorphic in (z,r\ — w) and an

immersion, Mc is a (local) complex submanifold of C X Gr of dimension 2« — /.

By the reality condition on the r', Mc is invariant under the antiholomorphic

involution (z, w) -* (w, z). This reflection induces a reflection on Mc via tt as

follows. Given (w, q) G Mc, (w, q) = ir(w, z) for a (locally) unique z. Use equation

(1.3) with argument (z, w) to define p. It is clear that the correspondence (z, p) ->

(w, q) is antiholomorphic and involutive.

2. Application to holomorphic mappings. In this section we prove the theorem. Let

D n U and M be given by (0.1) and (0.2), respectively. We first make a local

coordinate change in a neighborhood of the particular point z EM. After a

translation and rotation we may assume that this z = 0 and that T0(M) is given by

yJ = Im zJ = 0, 1 =sy' < /, and that H0(M) is given by zJ = 0, 1 </ < /. So za,

I < a *£ n, are coordinates on H0(M), and za, x' = Re zj, are coordinates on T0(M).
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Locally, as a graph over TQ( M ), M is given by equations

(2.1) pJ(z,z) = -yJ + hJ(za,za,x') = 0,        Î </-</,

in which the hj are convergent power series about the origin which vanish together

with their first derivatives when z" = x' = 0. We define a real analytic local

coordinate change T: (f7, f") -* (zj, z"), which is holomorphic in the f7 when the f"

are held constant, by

(2 7) T'
K '' vw' + Mr.F.W
It is clear that the (real) Jacobian determinant does not vanish at the origin, and that

Im f ' = 0 corresponds to M. For the functions r' defining D the sets of covectors

(3r'} and (3p'} in the z-coordinate system have the same linear span at points of M.

Since cJj.z-' = 0 at the origin of the f-system, {dtrJ) and [dÇJ] have the same span

there. Since the first order approximatioin of D in the f system is the linear corner

[dtrJ < 0}, it is clear that by a complex linear change of the Ç*, 1 «£/' *£ /, D can be

made to contain the wedge W+ = (Ux + iV+) X U0. Here U0 is a neighborhood of

f" = 0 in the f"-space, Í7, is a neighborhood of Re f7 = 0 in the Re f 7-space, and V+

is the (truncated) cone Im f7 > 0, 1 <j *£ /, in the Im f ■'-space. We denote by V~ the

(symmetrically truncated) cone Imf7 < 0, 1 <j < I, and by W~ the corresponding

wedge. If z = (zj, ca) = T(ÇJ, ca) and w = (wj, ca) = T($j, ca), it is clear from (2.1)

and (2.2) that pJ(z, w) — 0, and that these equations characterize the reflection

V - p.
Now we use the above to extend the mapping /. Let tj = (t¡j, c") be a point of

W-, I = (vJ, ca), w = T(i\), z = 7(f)- Then z G D and pj(z, w) = 0; i.e. z G Qw.

Letp = TZQW, z' = f(z), andp' = dfz(p). As Imt); -» 0, it follows that z ^ z0 E M,

and p -» HZ(M), for some z0. Since/is C1 and ¿/is an isomorphism on H(M), it

follows that p' is an (n — /)-plane which approaches p'0 = HZ,(M'), z'0 — f(z0). In

order to reflect (z', p') by the method of §1, we must show that (z', p') G M'c. Let

^'(z'> P') — 0 denote (local) holomorphic functions defining the complex manifold

M'c. Since (z'0, p'0) E M'c, we see that ^'(z', p') -* 0 as lm-qJ -* 0. By construction

^'(z', p') is an antiholomorphic function of t)J, for tj" = c" fixed, on W". We extend

this function continuously to W = W+ U W~ by setting it equal to 0 on W+ . By the

edge-of-the-wedge theorem (see [4]) V continues holomorphically to a full neighbor-

hood of (0, c") in the f "-space. Since it vanishes on the real axis, it is identically zero.

Hence, for Im 7jy sufficiently small, uniformly in c", (z', p') E M'c, and the reflected

point-plane (w', p') is defined and holomorphic in t)J G W~, for each fixed c".

Thus tj -* w '(ti7', c") gives a continuous extension / of / ° T to W. We now get an

extension F of /to a full neighborhood of 0 in C". This is given by the following

integral, formula (6), §4, of [4],

2ttF(V, c") = ffX*{V, e"), c") de.

F is continuous in (f7, c") since/is continuous on W. It is also holomorphic on each

plane f" = c". Set F = F ° T'\ F continuously extends / to a neighborhood of the

original point of M and is holomorphic on each /-plane f " = c". As in [1] (or see [2]),
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we can argue that F is holomorphic as follows. Let IC(F) be the complex line integral

of F about a small loop c in the complex z"-plane. IC(F) is holomorphic in z7 and

vanishes for the open set of z7 for which (zJ, c) E D. Hence, IC(F) = 0, and F is

holomorphic in z" by Morera's theorem.
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