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DISTANCE ESTIMATES FOR VON NEUMANN ALGEBRAS

shlomo rosenoer

Abstract. It is shown that for certain von Neumann algebras &, there is a constant

C such that

dist(7\ &)<C   sup   IIP-1-mi    for all 7" in «(3C).
relu«

1. Introduction. Throughout this paper, % denotes a separable Hilbert space and

%(%) is the algebra of all bounded linear operators on %. For any subalgebra éE of

^S>(%), let lat éE denote the lattice of orthogonal projections P invariant for éE. That

is, P^ AP = 0 for all A in éE, where P±= I — P. &is said to be reflexive if every

operator B satisfying Px BP = 0 for all P in lat éE belongs to 6E.

Let éE be a reflexive algebra and T an arbitrary operator in <$(3C). It is easy to see

that

(1) dist(r,éB)>   sup   \\P±TP\\.
Pe\at&

Arveson [1] proved that if §, is a nest algebra, then equality actually occurs in (1).

Davidson [3] has referred to Choi's example which shows that equality fails to hold

even if % is finite dimensional and éE is a m.a.s.a. He asked: if éE is reflexive and lat éE

is commutative, then is there a constant C such that

(2) dist(7\S)<C  sup   \\P±TP\\
PelatS

foralirini&(3C)?

In this paper, we shall prove that (2) holds (with C = 2) if éE is a von Neumann

algebra such that either éE or éE' is abelian. Note that if éE' is commutative, then so is

lat éE. Also if éE is a weakly closed uni tal algebra of normal operators, then (2) holds

with C = 3.

In [5], Johnson conjectured that for a von Neumann algebra éE there is a positive

constant K such that for all T in %(%),

(3) dist(r,Ä)<Ä-||A rlfi'i

where Ar is the derivation Ar(S) = ST — TS. Christensen [2] proved that (3) holds

for a very large class of von Neumann algebras. We will show that (2) and (3) are

equivalent.
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2. Distance estimates and derivations.

Theorem 2.1. Let & be a von Neumann algebra and let T belong to %(%).

(i)//dist(T, &) <K\\bT\a.\\, then

dist(T,â)<4K  sup   \\P±TP\\.
/•elatâ

(ii) //dist(7, éE) *s CsuP/,Elat 4IIP^ TP ||, then

dist(r,£)<fiiAr|a,||.
2

Proof. Since lat éE is complemented, we have

2  sup   ||¿^77*|| = 2  sup  maxiWP1- TP||,||PTP* 11}
Pe\at& felati

= 2   sup   || PT-TPl
pe\m &

=   sup   \\(2P-I)T-T(2P-I)\\^\\AT\&,\\.
/»eiatâ

This proves (ii).

Now suppose supPeUt(i\\PT -TP\\ = 8. Then for P in lat éE, \\AT(2P - I)\\ <

28. Let 9H be the real vector space of all Hermitian operators in éE'. By the

Krein-Milman theorem, the unit ball of 911 is the weakly closed convex hull of its

extreme points. But these extreme points are precisely (2P — I) for projections P in

éE', namely lat éE. Thus II Ar|,gJ| ^ 25. If B in éE' has ||5|| < 1, then write B = Ax +

iA2 where A¡ are Hermitian and M,.|| < 1. Then \\AT(B)\\ < IIA^/l,)!! +

II AT(A2)\\ ̂  48, which proves (i).    D

3. Abelian von Neumann algebras. In [2], it is established that if éE' is abelian,

dist(T,&)<\\AT\s,\\.

By Theorem 2.1, we conclude that (1) holds with C = 4. In fact, we have

Lemma 3.1. If &is a von Neumann algebra with abelian commutant, then for every T

in <$>(%),

dist(7\éE)<2  sup   \\P±TP\\.
Pelatffi

Proof. Let 8 — suppg^gllP-1- 77* Ii. Let G be the group of unitaries generated by

{2P - I: P E lat éE}. Then for every element U in G, \\UT -TU§< 28, whence

Il T - U'XTU\\ < 25. Since G is abelian, it has an invariant mean m. Let f(U) =

U~lTU, and define T0 = m(f) following the method of [6]. Since T0 is in the weakly

closed convex hull of {U~lTU: U E G), we have II7 - T0|| < 28. But the invariance

of m shows that T0 belongs to G' = (éE')' = éE. Thus dist(T, éE) « 25.    D

Lemma 3.2. Let <f> be a functional on <$>(%) continuous in the weak operator topology

such that (¡>(I) = 0. Then the kernel of § contains a m.a.s.a.

Proof. There is a finite rank operator A such that <¡>(T) = ti(AT) for all T in

%(%). It suffices to find an orthonormal basis {/} f or % such that (Af, /■) = 0 for

all i; For then, we take our m.a.s.a. to be all operators which are diagonal with

respect to this basis.
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The numerical range of an operator B, namely W(B) — {(Bx, x): \\x\\ = 1}, is

always convex and nonempty. When B acts on a space of finite dimension «, we

have

1   " 1
- 2 (Benei) =-tr£.
«     , n

¡= i

So if tri? = 0, then 0 belongs to W(B) and thus there is a unit vector / such that

(Bf, f) = 0. On the complement 911 of span{/}, we have

0 = trB=(Bf,f) + tv(B |gj = tr(B |^).

By induction, there is an orthonormal basis {/, 1 </'<«} with (Bf, f) = 0.

Choose a finite dimensional subspace 91 which reduces A and A |gjj. = 0. Apply

the previous paragraph to A (^ and complete the orthonormal set with an arbitrary

basis for 911- .    D

Lemma 3.3. Let & be an abelian von Neumann algebra on %, and let <f> be a weak

operator continuous functional on <$>(%) which annihilates éE. Then there is a m.a.s.a.

911 containing éE in the kernel of <f>.

Proof. We shall use the direct integral decomposition of éE [8, p. 19]. There is a

measure space (Z, ju) such that % = f® %(Ç)dfi(Ç) and éE is the algebra of all

operators T= /® 7(f)d/¿(f) where 7(f) is a scalar multiple of the identity I%^y

We can write 4> in the form 4>(7) = 2"=1(7x,, yt), and xi — /œJt,-(f ) dii(Ç) and

Define /(f) = !?=&,(£)', *($))■ Then /(f) belongs to L\Z, ¡x). If g(f) is a

bounded measurable function on (Z,¡i), then

o = o(feg(ni%a)Mn) = ffingind^n-

Hence /(f) = 0 a.e.

Let </>f be the weak operator continuous functional on iB(3C(f )) given by <j>¡(S) =

2^=1(5x,(f), '$({)). Then ^(1) = 0 for almost all f. So by Lemma 3.2, there is a

m.a.s.a. 911(f) in the kernel of fy. Let 9H = /• 9H(f ) ¿/i(f ). It is easy to verify that

9H is a m.a.s.a. in <$>(%) and <f>(91t) = 0.    D

Lemma 3.4. 7/éE is an abelian von Neumann algebra, and 7belongs to %(%), then

(4) dist( 7, & ) = sup dist( 7, 9H )

where the sup is taken over all m.a.s.a.'s 9H containing éE.

Proof. We will prove the nontrivial inequality dist(7, éE) > supdist(7, 911). Let 5

denote the right-hand side of (4), and fix e > 0. For each m.a.s.a. 911 containing éE,

choose 7^ in 91L with II7 — 7^11 < 5 + e. Let % denote the weak operator closed

convex hull of {7^}. If % were disjoint from éE, then by the Hahn-Banach theorem,

there is a weak operator continuous linear functional r> on <$>(%) which annihilates

éE but is nonzero on all of %. But by Lemma 3.3, there is a m.a.s.a. 9H0 containing éE

in the kernel of </>. In particular, ^(7^ ) = 0 which is a contradiction. Hence %

meets éE. Let A belong to the intersection % n éE. Then 117 - A11 < 5 + e. Since e

was arbitrary, dist(7, &) < 5.    D
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Theorem 3.5. If A is a von Neumann algebra such that âor éE' is abelian, then for

all Tin <$>(%),

dist(7,éE)«2  sup   \\P±TP\\.
Pelat &

Proof. Lemma 3.1 suffices if éE' is abelian. If éE is abelian and 91L is a m.a.s.a.

containing éE, then lat 9H Ç lat éE, so by Lemma 3.4,

dist(7, éE) = supdist(7,91L)

«sup 2    sup   ||7-L77||<2   sup   \\P±TP\\.    D
9lt      Pelat <3H />elat 3.

We conclude this section with a distance estimate for (possibly non-self-adjoint)

algebras of normal operators.

Theorem 3.6. If <$ is a unital weakly closed algebra of normal operators, then for all

Tin®>(%),

dist(7, <$)«3   sup   ||P1- 7711.
Pelat®

Proof. By [7, Lemma 9.20], % is abelian. Let 91L be a m.a.s.a. containing %. We

may assume that ||7|| = 1. Let 70 be the operator produced in the proof of Lemma

3.1. If ¿Vis a unitary in 911, and P belongs to lat <S, let Q = UPU*. For B in %

Q±BQ= UP±(U*BU)PU* = U(PXBP)U* = 0.

Thus Q belongs to lat <$. Now

HP-1 («7*717)7-1| = \\{UPX U*)T(UPU*)\\ = WQ^TQW.

Since 70 belongs to the weakly closed convex hull of {U*TU},

(5) sup   \\PXT0P\\<   sup   HPX77||.
/>elat$ Pelat«

Also, by Lemma 3.1,

\\T-T0\\<2   sup    ||7X 7P||<2   sup   l|7±77||.
PElafSH Pelat«

We can complete the proof by proving that dist(70, <$) < sup^g^^HP-1- 707||.

Now dist(70, %) = sup | <t>(T0) \ where </> runs over all weak * continuous functionals

on 9H of norm one which vanish on <$>. Let e > 0, and choose such a functional <i>

with dist(70, ©) <| <i>(70) | +£■ Since 91Lis maximal abelian, there are vectors x and

v such that <i>(Af) = (Mx, y) for all M in 91L and IUII II v|| < 1 + e. Let 70 be the
orthogonal projection onto the closed span of 9>x. Clearly, 70 belongs to lat ®,

P0x = x, and P$ y = y. So

dist(70, %) <| (T0x, y) | +e =| (70± T0P0x, y) \ +e

<||P0x7070|||UII||v|| +e<(l +e)   sup   \\P±T0P\\+s.
Pelat®

Thus, dist(70, ®) < suppg^çglIP"1- 70P||, and the theorem is proven.    D

4. Extensions of derivations. Let éE be an abelian von Neumann algebra. A

derivation from A to *$>(%) is a linear map A satisfying A(AB) = (AA)B + A(AB).

It is well known that every bounded derivation from & into CS>(%) can be extended
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to an (inner) derivation of <$>(%). Here we give a slight strengthening of this using a

technique developed in [1] and [3].

Theorem 4.1. Let 9 be the set of projections in an abelian von Neumann algebra éE.

Suppose A is a map of'$ into %(%) satisfying

(i) A(7 + Ô) = A7 + Aß when PQ = 0,

(ii)A(7ß) = (A7)ß + 7(Aß)W
(iii) || A71| =£ M for all P, Q in <3>.

Then there is a 7 in %(%) with \\T\\ < 2Msuch that A = AT\ <3>.

Proof. Let £ = {7y, 1 *£y =£ «} be a finite subset of 9 with 2"J=l P} = I. Define

7e = 2,#77,A7,. The standard argument shows that AI = 0 and thus 1ni=x AP¡ = 0.

Compute

T*Pm - 7m7e - 2 Pj(^Pi)Pm -Pm2 PAPt
m t+j

= - 2 {kPj)PiPm -Pm2 M,
i^=j i¥=m

= -(2A7,k-7m(2A7,)
j¥=m ' ¡¥=m

/V irk , .       x= (A7 )P  + P (AP ) = AP .

Thus, for every projection 7 in £", 7e7 - P7e = A7. By Lemma 3.1,

dist(7e, £') < 2 sup ||7E7 - PTt\\ < 2 sup ||A7|| < lit.
/>e£" Pet"

Choose an ^e in £' with ||7e - ^e|| *£ 2M + \/n. Set S£ = 7e - j4g Then 5e7 -

PSt - AP for every 7 in £".

Since all finite subsets of 6* with sum 7 form a directed set and the ball of radius

2M + 1 is weakly compact, the net {S£} has a limit point 7 Clearly, ||7|| < 2M

and TP- PT = AP for all 7 in <3>.

It has come to our attention that Theorem 2.1 and Lemma 3.1 have been proven

independently by Gilfeather and Larson [4], using similar methods.

Added in proof. The author is greatly indebted to the referee for many

improvements made on the manuscript.
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