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DIFFERENCE EQUATIONS AND MULTIPOINT

BOUNDARY VALUE PROBLEMS

P. W. ELOE

Abstract. Let 1= {a,a+ 1.b) be finite, let n> 1, and let V = [a, a +

t,'...',b +j}. '/= 1,... ,n. Let B be the set of mappings from I" into the reals and

define the linear difference operator P by

n

Pu(m) =  2 <*j(m)u(m +j),
(1) ,=o

where m G /, an(m) = 1. and a0(m) # 0 on /.

Existence of solutions theorems and iteration schemes that approximate solutions

are given for boundary value problems of the form Pu( m) = f(m, u. Eu,... ,E"~lu),

with boundary conditions Tu(m) = r, where P is defined by (1), E'u(m) =

u(m +j), y = 0, 1,...,«— 1, /: / X R" ^ R is continuous, and T: B — R" is a

continuous linear operator. The results are based on solutions of difference inequali-

ties and sign properties of associated Green's functions.

1. Introduction.   Let J = {a, a + 1, a + 2,..., b} be finite, let n > 1 and let P =

{a,a + l,...,b + j}, j = 1,...,n. Define the nth order linear difference operator P

by
n

(1.1) Pu(m) = ^2 otj(m)u(m + j),
j=o

where the independent variable m ranges over /, an(m) = 1, cto(m) / 0 on /, and

the coefficients ctj(m), j = 0,..., n, are defined on I. Define the Banach space B to

be the set of real valued maps on In with norm

||u|| = max |u(m)|.
m€/n

Define shift operators E? by the relations

(1.2) Eju(m) = u(m + j),      j = 0,l,...,n-l, m el.

Let 7: B —* Rn be a continuous linear operator.

We shall consider the boundary value problem (BVP)

(1.3) Pu(m) = f(rn,u,Eu,.. .,£n-1u) = f[m,u],

with boundary conditions given by

(1.4) Tu(m) = r,

where / : IX Rn —* R is continuous and r G Rn.

In [5], P. Hartman defined disconjugacy of the linear difference equation

(1.5) Pu(m) = 0,
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where P is defined by (1.1), in the following manner. For a sequence of real numbers

u: u(a), u(a+l), ■. ■ ,u(a + b+n), m = a is a generalized zero for u if u(a) = 0, and m

(> a) is a generalized zero for u if u(m) = 0 or there is an integer k, 1 <k <m — a,

such that (—l)ku(m — k)u(m) > 0 and, if A; > 1, u(m — k + 1) = • • • = u(m — 1) =

0. The difference equation (1.5) is disconjugate on 7™ if no solution u ^0 has n

generalized zeros on In.

Hartman [5] obtained many results that have analogues in the theory of discon-

jugacy of nth order linear differential equations. Of special interest to us, Hartman

showed that the Green's function for a class of BVPs may satisfy known sign

properties, as in the following theorem.

THEOREM H. Let P be given by (1.1) and assume that (1.5) is disconjugate on

In. Let mi,m2, ■■■,mn G 7" such that a = mi < m^ <••• < mn = b + n. Then there

exists a unique Green's function G(m, s) defined onInxI such that for any function

f = f(m), m El, the unique solution of the BVP

Pu(m) = f(m),      u(m¿) = 0,   i = 1,..., n,

is given by u(m) = ¿^s=aG{m,s)f{s), m G In. Moreover, G(m,s) satisfies the

inequality

(1.6) (-ir+^G(m,s)>0,       m € 7\s G I,

where a(m) = card{j : m3 < m, 1 < j < n}.

Motivated by the inequality (1.6), we define the following condition.

Condition S. There exists a Green's function G(m, s) for the BVP Pu(m) = 0,

7u(m) = 0, and the sign of G(m, s) is independent of s.

This paper provides results concerning existence of solutions of various classes

of BVPs for which Condition S holds. In §2 we present preliminary results from

the theory of linear difference equations and an application of the Schauder fixed

point theorem. In §3 we establish theorems for the existence of solutions of the BVP

(1.3)-(1.4) based on Condition S and solutions of difference inequalities; in addition,

we provide piecewise monotone iteration schemes to approximate solutions of the

BVP (1.3)—(1.4). The results of this section are analogous to some of the results of

V. Seda [6] and P. W. Eloe and L. J. Grimm [1] for ordinary differential equations

and Grimm and K. Schmitt [4] and Eloe and Grimm [2] for functional-differential

equations.

2. Preliminary results. We shall state some results from the theory of linear

difference equations; we refer the reader to the book by T. Fort [3]. Let P be

given by (1.1) and let 7: B —► Rn be a continuous linear operator. The boundary

conditions given by (1.4) are more general than those defined in Chapter DC in [3],

but the following propositions remain valid if 7 is a continuous, linear operator.

PROPOSITION 2.1. Ifu = 0u the only solution of the BVPPu(m) = 0, Tu{m) =
0, then for any r G Rn, there exists a unique solution of the BVP Pu(m) = 0,

Tu(m) = r.

PROPOSITION 2.2. Ifu = 0 is the only solution of the BVPPu(m) = 0, Tu(m) =
0, there exists a unique function G(m,s), called the Green's function, defined on

In XI which has the following characterization: For each sel, v(m) = G(m, s) is
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the unique solution of the BVP Pu(m) = 6ma, Tu(m) = 0, where 6ma = 1 ifm = s

and 6ms = 0 i/m # a. Furthermore, for any function f = /(m) defined on I, the

unique solution of the BVP

Pu(m) = f(m),   7u(m) = 0,

is given by

U(m)=¿C?(m,5)/(5).

From the above propositions, it follows that if u s 0 is the only solution of

Pu(m) = 0, Tti(m) = 0, then for any / = f(m) on I and r G Rn, the unique solution

of the BVP

(2.1) Pu(m) = f(m),

(2.2) Tu(m) = r,

is given by

b

(2.3) u(m) = lr{m) + ¿ G(m, s)f{s),
s=a

where lr(m) is the unique solution of Pu(m) = 0, Tu(m) = r.

Let f:lxRn —► R be continuous and define the summation operator K: B —► B

by

b

(2.4) Ku(m) = lr(m) + £ G(m, s)f[s, u),
s=a

where /[m,u] is defined as in (1.3). Note that u is a solution of the BVP (1.3)-(1.4)

if, and only if, u is a fixed point of the operator K defined by (2.4). We have the

following fundamental result.

Theorem 2.3. Suppose u = 0 is the only solution of the homogenous BVP

Pu{m) = 0, Tu(m) = 0 and suppose that f : IX Rn —► R is continuous and bounded.

Then for any r G Rn, the BVP (1.3)-(1.4) has a solution.

PROOF. Let Q = sup{|/(m,ui,...,iin)|: (m,iti,...,un)G/xRn}. Let lr(m) be

the unique solution of Pu(m) — 0, Tu(m) = r, and set L = ||/r||. Let G(m, s) be the

Green's function for Pu(m) = 0, Tu(m) = 0, and set G = maxm€/» 23s=0 \G(m,s)\.

Let D = {ueB: \\u\\< L+QG} and note that the continuous operator K, defined

by (2.4), maps the closed convex set D into itself and that K(D) is compact. By

the Schauder fixed point theorem, the operator K has a fixed point and so, the

BVP (1.3)-(1.4) has a solution.

3.   Existence of solutions.    Let P be defined by (1.1), let 7: B -► R" be a

continuous linear operator and let r G Rn. Consider the BVP

(3.1) Pu(m) = f(m,u,Eu,... ,£^_1u) = f[m,u],

with boundary conditions given by

(3.2) Tu(m) = r,
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where the shift operators E3, j = 0,..., n — 1, are defined by (1.2), and / : IX R"

R satisfies the Lipschitz condition

(3-3) |/(m,Ui,...,ttn)-/(m,ûi,...)ûn)|<Q^|ui-ûi|,
t=i

for all (m,u\,...,un), (m,ûi,...,ûn) in J X Rn, for some Q > 0.   Note that if /

satisfies (3.3), then / is continuous on / X Rn.

Assume that Condition S holds for the BVP Pu(m) = 0, Tu(m) = 0, and let

{Iith} be a partition of In such that

(3-4) G(m, s) < 0   for (m, s) G h X 7,      G(m, s) > 0   for (m, s)el2x 1.

Further, assume that there exist functions V\ and w\ in the Banach space B

satisfying

(3.5) T«i(m) = r = 7u>i(m),

and such that for m G I,

(3.6) Pt;i(m)- /[m,ui] + Ai(m) < 0 < Pwi(m)- f[m,wi] - A^m),

where

n-l

(3.7) Mm) = Q 22 l^ifiM -wi(m))|.
i=0

THEOREM 3.1. Assume that Condition S holds for the BVP Pu(m) = 0,
Tu(m) = 0, and suppose that f: I X Rn —► R satisfies (3.3). Assume i/iere exisi

functions vi and wi satisfying (3.5) and (3.6). 7/ien i/iere exists a solution u of the

BVP (3.1)-(3.2) such that

(3-8)
vi(m) > u(m) > Wi(m),   m£li,

vi(m) < u(m) < wi(m),   mG-ZV

Proof.  We shall first show that

(3.9) vi(m) >wi(m),   mGii,       and      vi(m)<Wi(m),   m eh-

By (3.5), vi — wi satisfies Tu(m) — 0 and so,

b

(vi - wi)(m) = 22 G(m, s)[P{v! - wi)(a)].
s=a

It follows from (3.6) and (3.7) that P(v-i -u>i)(m) < 0 for m GI; the sign of G(m, s)

is given by (3.4) and the inequalities (3.9) follow.

For each ueB, define E^u, j = 0,..., n — 1, as follows: For m el,

EHi(m), ifEiu(m)>Eivi(m)

Eiu(m), iIE'wi(m)<E'u(m)<Eivi(m)^, m + jeh,

Eiwi (m), \îEiu(m) < Eiv¡\ (m)

EHi(m), iîEiu(m) < Eivi(m)

Eiu(m), ifß^u)i(m)>S>u(m)>S>t;i(m)^ m + jeh-

ßiwi(m), \iEiu(m)>Eiw1(m)

Eiu(m) =
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For mel, define F[m,u] = f(m,u,Eu,..,,En~1u). The function F is continuous

and bounded on I X Rn and so, by Theorem 2.3, the BVP Pu(m) = F[m,u],

Tu(m) = r, has a solution u.

We now show that the solution u of the truncated problem Pu(m) = F[m,u],

Tu(m) = r, satisfies (3.8) and hence that u is a solution of (3.1)-(3.2). (v\ — u)(m)

satisfies 7(^i — u)(m) = 0; thus,

b

(vi - u)(m) = J2 G(m, s^P^ - u)(s)),
s—a

for m G 7". For mel,
_

P(vi — u)(m) < f[m,Vi] — F[m,u]—Ai(m) < 0

since / satisfies (3.3). The sign of G(m,s) is given by (3.4) and it follows that

Vi(m) > u(m), m G I\, and vi(m) < u(m), m G ¡2- Similarly, u(m) > u>i(m), m G

h, and u(m) < w\(m), m G h- Thus, u satisfies (3.8) and the proof is complete.

The functions Vi and wi satisfying (3.5) and (3.6) provide a priori bounds for

solutions of the BVP (3.1)-(3.2). These bounds can be improved iteratively in

the following manner. Let lr(m) be the unique solution of the BVP Pu(m) = 0,

Tu(m) = r. Define inductively the sequences {vj(m)} and {wj(m)} for m G In by

(3.10)

u,+i(m) = lr{m)+ 22G{m,s)(f[s,vm] -Aj{s)),
s=a

b

wj+1(m) = lr(m)+ 22G(m>3)(f[3>wm] + Ms)l

for j > 1, where vi and w\ satisfy (3.5) and (3.6) and

Mm) = QJ2 l%«) -^(m))|,
t=0

for mel. The proof of the following corollary can be obtained directly from the

proof of Theorem 1 [1] and is omitted here.

COROLLARY 3.2. Assume all the hypotheses of Theorem 3.1 and define the

sequences {vj(m)} and {wj(m)} by (3.10). Ifu is any solution of the BVP (3.1)-(3.2)

satisfying (3.8), then for each j > 1,

Vj(m) > Vj+i(m) > u(m) > m,+i(m) > Wj(m),   meh,

Vj(m) < Vj+i(m) < u(m) < Wj+i(m) < Wj(m),   m G h-

REMARKS, (i) Let G = ma^gj« ¿Zba=a lG(m>s)l »nd let Q be as in (3.3). If
QGn < 1, then K defined by (2.4) is a contraction map and an application of the

Contraction Mapping Principle provides existence and uniqueness of a solution of

the BVP (3.1)-(3.2).
(ii) Due to the generality of the boundary conditions (3.2), we require that Vi

and wi satisfy (3.5). As with boundary value problems for differential equations

[6], this condition can be weakened. Let lVl(m) be the unique solution of the BVP

Pu(m) = 0, Tu(m) = Tvi(m), and let lWl(m) be the unique solution of the BVP
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Pu(m) = 0, Tu(m) = Twi(m). Suppose

lVl{m) > lr(m) > l^irn),   m eh,

lVl(m) < lr(m) < lWl(m),   m G h,

where lr{m) is the unique solution of the BVP Pu(m) = 0, Tu(m) = r. Then the

hypothesis that vi and W\ satisfy (3.11) can replace the hypothesis that Vi and wi

satisfy (3.5) in Theorem 3.1. Corollary 3.2 remains valid.

(iii) If / has certain monotonicity properties, then solutions of BVPs may be

found as limits of approximating sequences. For example, consider the BVP

(3.12) Pu(m) = f{m,u),

(3.13) Tu(m) = r,

where P and 7 are as in Theorem 3.1 and Condition S holds. Suppose that f:lx

R —► R is continuous and satisfies the monotonicity condition, for u\, U2 G R, U\ >

u2,

(3.14) f{m,ui) < /(m,u2),   m eh,   and   f{m,ui)> f(m,u2),   meh-

Let lr(m) be the unique solution of the BVP Pu{m) = 0, Tu(m) = r, and define the

summation operator K : B —► B by

b

(3.15) Ku{m) = lr(m) + £ G{m, s)f{s, u(s)).

Suppose there exist vi and w\ in B satisfying (3.5) such that

(3.16) Vi(m) > wi(m),   meh,      and      vi(m) < W\(m),   meh,

and for mel,

(3.17) Pvi(m) - f(m, v^m)) < 0 < Pw^m) - f(m, Wi{m)).

Define inductively the sequences {vj(m)} and {wj(m)} by

(3.18) Vj+i(m) = Kvj(m)   and   Wj+i(m) = Kwj(m),

for j > 1, where K is defined by (3.15). Then the sequences {vj(m)} and {wj(m)}

converge monotonically on h and h to solutions of the BVP (3.12)-(3.13). We

summarize the above discussion in the following theorem.

THEOREM 3.3. Let P and 7 be as in Theorem 3.1, let Condition S hold, and
let f: I X R —► R be continuous and satisfy (3.14). Assume there exist functions V\

and w\ in B satisfying (3.5), (3.16) and (3.17) and define the sequences {vj[m)} and

{wj(m)} by (3.18). Then the sequences, {vj(m)} and {wj(m)} converge in B to v(m)

andw(m), respectively, where v(m) andw(m) are solutions of the BVTJ(3.12)-(3.13)

and such that for each j > 1,

Vj(m) > Vj+i(m) > v(m) > w(m) > Wj+i(m) > Wj(m),   meh,

Vj(m) < Vj+i(m) < v(m) < w(m) < Wj+i(m) < Wj(m),   m e h-
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(iv) Define Au(m) = u(m+l)—u(m) and Aî+1u(m) = A(A*u(m)), i = 1,2,..., n—

1. For various classes of boundary value problems the sign of A*G(m, s) is inde-

pendent of s, for some i, 1 < i < n — 1, where AG(m, s) = G(m + 1, s) — G(m, s),

A%+1G(m, s) = A(AlG(m, s)), ¿ = 1,..., n — 1. For example, it can be shown that

the Green's function for the BVP A2u(m) = 0, u(a) = Au(b + 1) = 0, satisfies

G(m,s)<0   for (m,s) e T2 X I,

AG(m, s) < 0   for (m, s) G I1 X I.

Theorem 3.1 can be extended in a natural way to boundary value problems of the

form A2u(m) = f(m,u,Au), with boundary conditions u(a) = r\, Au(b+ 1) = T2,

t-í, r2GR.

(v) We can consider the difference equation (3.1) to be a functional-difference

equation with advanced argument. For certain classes of boundary value problems,

Theorem 3.1 can be extended to functional-difference equations with retarded and

advanced argument. Such extensions are analogues of results of Grimm and Schmitt

[4] and Eloe and Grimm [2] on functional-differential equations.
■
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