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ON FACTORIZATIONS OF SELFADJOINT
ORDINARY DIFFERENTIAL OPERATORS

ANTONIO GRANATA1

Abstract. Consider an ordinary linear differential operator L, of order » > V";

represented by Lu=a„(t)ui")+--+a0(t)u Vu e C"(a,b), with real-valued

coefficients ak e Ck(a, b), 0 =s k « n, a„ ¥• 0 on (a, ¿>). According to a classical

result, if L is formally selfadjoint Ion (a, b) then it has a factorization of the type

I* — PÀPn-A ' ' ' (P\(Pou)')' •)']'Vu e C"(<2, fc), where the pk's are suffi-

ciently-smooth and everywhere nonzero functions on (a, b) such that pk = p„-k

(k = 0,... ,n). In this note we shall examine this result critically and show by means

of counterexamples that the different classical proofs are either merely local or

purely heuristic. A proof, which is both rigorous and global, is inferred from recent

results on canonical factorizations of disconjugate operators. In addition, informa-

tion is obtained on the behavior of the pk's at the endpoints of (a, b) which may

prove useful in applications.

1. Introduction.  Let L be a linear ordinary differential operator represented by

(1.1) Lu s fln(í)u(n» + on_1(t)u(n-1) + • • • + a0(í)u  VueCn(a,b)

with real-valued coefficients Ofc G C°(a, b), on / 0 on (a, b) and n > 1. It is a classical

elementary fact that if L has a factorization of the type

(1.2) Lu = p„[p„-i(---(pi(p0u)')'-••)']'   VuGC7>,&)

where the p^'s are suitable sufficiently-smooth and everywhere nonzero functions

on (a, b), then its formal adjoint L* has the factorization

(1.3) L^S(-l)>0[pi(---(Pn-i(Pn^)T- ••)']'   V*,GC>,b).

This is also a consequence of the classical reciprocity theorem (Reciprocitätsatz)

by Frobenius [3, p. 263; 5, p. 328; 6, p. 189] which states that the formal adjoint of

the composition product of two differential operators, P = A1A2, is P* = AJj-AJ1.

Direct proofs of the relationship between (1.2) and (1.3) can also be found in

Frobenius [4, p. 257] or Coppel [1, p. 104].
Now let a factorization of type (1.2) be called selfadjoint on (0,6) when

(1.4) pk(t) = akPn-k{t),      te{a,b),k = 0,1,..., n,

for some nonzero constants ctk- A direct application of the reciprocity theorem

shows that if L has a selfadjoint factorization on (a, b) then it is formally selfadjoint

on (a, b); i.e., by definition, Lu = (—l)nL*u Vu G Cn(a, b). The converse has been

long since given in the literature; we shall state it as
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Assertion A. IfL is formally selfadjoint on an open interval (a, b), -co < a <

b < +00, then it admits of a selfadjoint factorization on (a, b).

Assertion A goes back to Frobenius [6, p. 193] for n even and to Darboux [2, livre

IV, Chapitre V, p. 127] for n odd. Their arguments are reported in the treatise by

Schlesinger [13, Band I, Abschnitt H, Kapitel 3, pp. 70-75]. An apparently shorter

proof appears in a book by Ince [10, pp. 125-126]. The Frobenius proof, though

formally correct, does not take into due consideration the fact that several steps

in obtaining factorizations of type (1.2) require multiplication by 1/pfc, hence they

are only valid on an interval where pk # 0 V/c. Such a fact was alien to all the

nineteenth century authors. It was not until 1922 that this point was first stated

precisely by Polya [12] who characterized the existence of a factorization of type

(1.2) with the property nowadays known as "disconjugacy". The original Frobenius

proof is as follows: firstly [6, p. 192], he proves that the given operator P, assumed

selfadjoint and of even order, can be written in the form Pu = cqDPiD(cou) with

Co = co{t) such that P(l/cn) = 0 (hence necessarily en ^ 0); then by applying the

same procedure to the operator Pi he infers that Pi = CiDP2D(c\u). When Polya's

results are taken into consideration we can by no means be sure a priori that there

exists a suitable function ci # 0 on the same interval where en is defined. Even if we

assume at the outset that P is disconjugate on (a, 6), and hence has a factorization

of type (1.2), we cannot infer without further investigations the existence of such a

c\ / 0 on (a, b).

The arguments used by Darboux for odd-order operators are similar.

Taking account of Polya's results we may assert that the proofs by Frobenius

and Darboux have a merely local value: these authors prove the existence of a

selfadjoint factorization on every sufficiently small subinterval of (a, b).

On the other hand, the proof given by Ince is indeed no proof: this author [10,

p. 125], after showing that (1.2) implies (1.3), claims that if, in particular, L is

selfadjoint then ipso facto pk = +pn-k Vfc, which is practically the same as (1.4). We

shall disprove this naive argument in §3 by means of counterexamples: a selfadjoint

operator may very well have infinite nonselfadjoint factorizations (at least for n >

3) and also have infinite selfadjoint factorizations "essentially" different from one

another (for each n > 2).

In this note we present a proof of Assertion A which is directly inferred from

recent results both by Trench [14] and the author [9] on canonical factorizations

of disconjugate differential operators. In such a way we shall also obtain some

information on the behavior of the coefficients pk at the endpoints of the interval

which may prove useful in applications.

2. A rigorous proof of Assertion A. In addition to what has been pointed out in

the introduction, certain nontrivial difficulties connected with the regularity of the

coefficients also arise. As we consider the problem of selfadjointness in the classical

framework we make the further assumption in (1.1) that

(2.1) akeCk(a,b)     (k = 0,...,n).

In this case the adjoint of L is uniquely determined by the operator

(2 2) ¿*^(-l)>n(iM(n)

+ (-l)n-1(on_1(i)t;)("-1)-r-... + oo(i>   VvGC>,6).
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A crucial step in our proof is that (1.3) can be inferred from (1.2) which is

obviously permissible only when the coefficients pk in (1.2) are sufficiently smooth,

namely when

(2.3) pfcGCmax^n-fc)(a,6)      (fc = 0,...,n).

As a matter of fact the assumption made at the outset of the paper, ak G

C°(a,£>)Vfc, implies that L has a factorization (1.2) where

(2.4) pkeCn-k{a,b)      (fc = 0,...,n)

(see the standard factorization obtained by the use of Wronskians in [12]); but it

is not at all obvious that (2.1) implies (2.3). For convenience we shall strengthen

condition (2.1) as follows:

(2.5) akeCn(a,b)      (k = 0,...,n),

since (2.5) easily implies (2.3). In fact, given any factorization of type (1.2), we

select the special fundamental system of solutions of Lu = 0 represented by

i*o = l/po;

Uk+i{t) = —7-r      —TTT-i        —7TT      (/c = l,...,n-l),
Po{t) Jt pi(ii)      Jt     pfc(ife)

with T arbitrarily chosen in (a, b). Since (2.5) implies that all the solutions of Lu = 0

are of class C2n(a, b), a simple induction argument on the functions Uk shows that

Pk e C2n-k(a, b), k = 0,..., n; and this implies (2.3).

In our opinion, conditions (2.5) are far from necessary in establishing our main

result which should remain valid for the standard hypothesis (2.1). However, a

rigorous proof of this rests on the fact that (2.1) implies (2.3) in every factorization

of L: this is left an open question.

The factorizations considered in the sequel are of the form (1.2) and when they

are said to be valid on an interval (c, d) it is understood that the p^'s are strictly

positive on (c, d). Here is the main result:

THEOREM A. Let L be a linear ordinary differential operator represented by

(1.1), of order n > 2 and with real-valued coefficients ak G Cn(a,b), k = 0,...,n,

where (a, b) denotes an arbitrary (possibly unbounded) open interval and an =£ 0 on

(a, b). IfL is disconjugate and formally selfadjoint on (a,b) the following are true:

(I) L admits on (a, b) of a selfadjoint factorization of the type (1.2) such that

(2.6) f{l/pk) = +oo      (fc = l,...,n-l)
Ja

and of another selfadjoint factorization such that

(2.7) j (l/pfc) = +co      (fc = l,...,n-l).

Moreover any factorization ofL subject to conditions (2.6) or (2.7) is automatically

selfadjoint.
(II) On each interval (a, b — e), e > 0, L admits of a selfadjoint factorization such

that

(2.8) i(l/pk)<+oo      (fc = l,...,n-l).
Ja
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Similarly, on each interval (o -I- e, b), e > 0, L admits of a selfadjoint factorization

such that

(2.9) |(l/pfc)<+oo      (k = l,...,n-l).

(DI) When it is furthermore assumed that L is disconjugate on [a,b], see [9,

Definition 3.5, p. 164], then L has a selfadjoint factorization on the whole interval

(a, b) satisfying (2.8) and another such factorization satisfying (2.9).

NOTE. If b = +co, the symbol (a, b — e) stands for an interval of the type (a, b),

a<b< +oo; analogous convention for a = —oo.

PROOF. As in [9] we shall use the following locutions: factorization (1.2) is

termed a canonical factorization of type (I) [resp. of type (IT)] at the endpoint a if

the functions pk satisfy (2.6) [resp. (2.8)]. The analogous definitions at the endpoint

b are obtained by replacing (2.6) with (2.7) and (2.8) with (2.9). Now from [14,

Theorem 1] it follows that L has a canonical factorization of type (I) at a, which we

shall again call (1.2). Since from our preliminary remarks all the pfc's are of class

Cn(a, b), we can state (see [1, p. 104]) that the formal adjoint of L has a factorization

(1.3) which is obviously canonical of type (I) at a. Using the assumption that L is

formally selfadjoint on (a, b) we conclude that L has the two factorizations on (a, b),

(1.2) and (1.3), both of type (I) at a. From the essential uniqueness of factorizations

of type (I), [14, Theorem 1], it follows that the pfc's must satisfy (1.4). The same

reasoning holds at the endpoint b and also the last assertion in part I is proved.

We shall now proceed to part HI. As far as factorizations of type (H) valid on (a, b)

are concerned, we cannot assert that any such factorization (if it exists at all) is

selfadjoint (see part B of §3). But if L is supposed disconjugate not only on (a, b)

but also on [a, b], in the appropriate generalized sense, (note that one or both the

endpoints a and b may be infinite or that not all the coefficients a*; may be extended

with continuity to the closure of the interval) then Theorems 3.1 and 3.2 in [9] imply

that any canonical factorization of type (I) at a [resp. at b] is of type (H) at o [resp.

at a]. But we have just proved that any factorization of type (I)—and there is

always one such factorization [14]—is selfadjoint.

For the proof of part II we note that any operator disconjugate on (o, b) is

disconjugate in the generalized sense on [a, b) and on (a, b] (Levin [11, Lemma 2.3,

p. 61]), hence, it is obviously disconjugate on any subinterval [a, b — e] and [a + e, b].

Now part II immediately follows from part III.    D

Notice that in Theorem A there is no claim that all selfadjoint factorizations are

canonical; counterexamples are given in part B of §3.

In Theorem A it is supposed n > 2; for n = 1 it is trivial to directly verify that

any operator L of the form Lu = ai(t)u +ao(t)u, where an G C°(a, b), oi G C1(a, b),

Oi # 0 on (a, b), has only one (constant factors apart) factorization of the type

Lu s pi(pou)' and that L is formally selfadjoint iff p\ = po- For n = 1 the concept

of canonical factorization is meaningless.

A possible application of Theorem A is that if L is a disconjugate selfadjoint

operator then all the special asymptotic results pertaining to the perturbed equation

Lu = f(t, u) in [7, 8] are valid.

3. Counterexamples and complements. In this section all the above-mentioned

counterexamples are given pointing out the difference between the cases n = 2 and

n>2.
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A. The n = 2 case. It is well known that the second-order differential operator

(3.1) Lu = a2(t)u" + ai(t)u' + a0(t)u  VueC2(a,b)

where ak G Ck(a, b), k = 0,1,2, is selfadjoint iff ai = a'2. We can furthermore assert

THEOREM 3.1. Every operator L of the type (3.1), selfadjoint and disconjugate

on an open interval (a, b), has only selfadjoint factorizations, which in turn are of the

form (constant factors apart) Lu = p[a2(pu)'/p2]' for some suitable function p > 0

on (a,b).

This can be proved in an elementary manner by expanding any factorization of

L, Lu = P2[Pi(Pow)T) and comparing the so-obtained coefficients with those of the

expression (3.1). The factorization

u"(í)s(í_c)-l[(í_c)2Mí)/(í_c))T

which holds on an interval (a, b), —oo < a <b < +co, whatever constant c < a has

been chosen, actually shows the existence of infinitely-many selfadjoint factoriza-

tions essentially different one from the other.

B. Then>3 case.

Theorem 3.2.   For each integer n > 3 and for each open interval (a, b) there

exists an nth-order constant-coefficient linear differential operator L such that

(i) L is disconjugate and selfadjoint on (a, b);

(ii) L has nonselfadjoint factorizations (possibly infinitely-many).

PROOF. First case: (a,b) # R. We may choose L = dn/dtn. Indeed if, for

instance, a > -co and b < +oo then L admits on (a, b) of the factorization

^n-fc)"!^)

(3.2) Lu = (t-cf
;^yy

where c is an arbitrarily chosen constant < a and k an integer, 0 < k < n — 1.

Factorization (3.2) is selfadjoint iff A; = n/2. We point out in passing that if ¿c =

n/2 (neven < 4) then factorization (3.2) is selfadjoint on the interval (c, +oo) but it

is not canonical at either c or +00. On the other hand if k # n/2 and if c < a then

it is canonical on (a, b) of type (H) at a (if b < +00 it is also canonical of type (II)

at b) but not selfadjoint.

Second case: (a, b) = R. We may choose as L any operator with constant real

coefficients such that, when r\,... ,rn are the n roots of its characteristic equation,

each counted according to its multiplicity, the following properties hold:

(1) all the roots are real (disconjugacy condition);

(2) if r is a root with multiplicity v then (—r) is also a root with the same

multiplicity (selfadjointness condition);

(3) at least two roots are distinct.

In such a case it is easy to convince oneself that there exists a permutation of

the n roots, again called n-,... ,rn, such that rk — rk+i # rn-k — fn-k+i for at least

one integer ke{l,-.-,n — 1}. Then the factorization given in Theorem 4.1 of [9] is

not selfadjoint.

Note that in the second case the choice of an operator other than dn/dtn is

not an unnecessary complication but agrees with the conjecture formulated in [9,

Remark 3 following Theorem 3.3, p. 165].
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As instances of operators satisfying (1), (2), (3), we have L = (D2 — 1)" or L =

D(D2 - l)n, where D = d/dt.

x C. Factorizations on compact intervals. Suppose L to be defined by (1.1) with

àk e Cn[a, b], -co < a < b < -foo, and let L be disconjugate and formally selfadjoint

on (a,b). What then can be said about factorizations of L on [a,b], i.e. with

coefficients pk satisfying (1.4) on [a, 6]? It is by no means true that if a factorization

of L holds [and in particular if it is selfadjoint] on (a, b) then it holds automatically

[and is selfadjoint] on [a, £>]; in fact the essence of the problem is that the very

continuity of the pfc's at the endpoints is dubious: glance for instance at (3.2).

In this direction we can give the following result when L is assumed to be

disconjugate also on [a, £>].

Theorem 3.3. Let L be the operator (1.1) with ak G C°[a,6] (-co < a < b <

+oo; k = 0,..., n) and an # 0 on [a, 6], and let L be disconjugate on [a, b]. Then L

has a factorization (1.2) where

(3.3) pk > 0   on\a,b]   and  pk G Cn~k[a,b]   for each k = 0,...,n.

Under the further assumption that L is formally selfadjoint on (a, b) and that ak G

Cn[a, b] VA;, then L has a selfadjoint factorization (1.2) on [a, b] where the pk's satisfy

conditions (3.3), hence obviously

b

(l/pfc)<+oo   V/c.

PROOF. Let ak be an arbitrary extension of Ofe on R, 5fc G C°(R), k = 0,... ,n,

and let L be the operator

Lu sâ-n{t)u(nî + ■■■+ S0(í)u   Vu G Cn(R).

By our assumptions L is disconjugate on [a, 6]; hence, it follows from Lemma 7 in

[1, p. 93] that there exists an e > 0 such that L is disconjugate on (a—e, b+e); this in

turn, by Polya's characterization of disconjugacy, implies that L has a factorization

of type (1.2) on (a — e,b + e). Such a factorization is obviously also a factorization

of the operator L on [a, b] satisfying (3.3)—for the smoothness of the pfc's see (2.4).

The second part of the theorem follows by applying Theorem A to the operator

I.    D

It is instructive to note that under the hypotheses of the theorem, L cannot have

a canonical factorization of type (I) at an endpoint, say a, with all the coefficients

Pk G C°[a,b). In fact, in this case the two conditions

f34) (pkeC°[a,b)        (k = Q,...,n),

Ua(l/Pk) = +oc    (k=l,...,n-l)

would imply Pfc(0) = 0 (k = 1,..., n — 1); further, from

Lu = p„[pn-i(- • iPou)'- • •)']' = an(i)u(n) + • • • + a0(t)u

it follows that an = poPi- • -pn, hence on(0) = 0, contradicting one of the hypothe-

ses. The conclusive step in the foregoing reasoning uses vitally the continuity of

all the pfc's on [a, b), otherwise we may exhibit as a counterexample the following

L
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factorization of the operator L = dn/dtn:

«'"'«) »¡¿T'l-'tA)'
which has the following peculiarities:

(i) the operator Lu = u^ has coefficients ak G C°°(R), Ofc / 0 on R (k = 0,..., n);

(ii) the coefficients pk satisfy

,     , (Pk e C°°[0,+oo)    (k = l,...,n-l),

■    J Wo) = 0 (fc = l,...,n-l)
f

(hence J0(l/Pk) = +oo, k = 1,..., n - 1).

Note the difference between (3.4) and (3.5).
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