NONDISCRIMINATING SETS FOR H^{∞}

DONALD E. MARSHALL, 1 ARNE STRAY AND CARL SUNDBERG

ABSTRACT. We characterize the subsets S of the unit disk D with the property that any function defined on S that has a bounded harmonic extension to D, must also have a bounded analytic extension to D.

Let D denote the open unit disk in the complex plane, $\{z: |z| < 1\}$. Let h^{∞} denote the space of bounded harmonic functions on D and let H^{∞} denote the subspace consisting of the bounded analytic functions on D. We wish to characterize the subsets S of D with the property that the restriction spaces $H^{\infty}|_{S}$ and $h^{\infty}|_{S}$ coincide. Each $f \in h^{\infty}$ has a nontangential limit $f^*(e^{i\theta})$ almost everywhere with respect to Lebesgue measure on the boundary of the unit disk ∂D , and f is the Poisson integral of f^* . By identifying each $f \in h^{\infty}$ with its boundary value function f^* , h^{∞} is isometrically isomorphic to L^{∞} , the essentially bounded measurable functions on ∂D . If B is a subspace of L^{∞} , we let \hat{B} denote the space of harmonic extensions of elements of B to D. In keeping with standard practice, we denote the space of boundary functions of elements of H^{∞} by H^{∞} also, i.e. $H^{\infty} = \hat{H}^{\infty}$. If $H^{\infty}|_{S} \neq h^{\infty}|_{S}$ then S discriminates between H^{∞} and all other Douglas algebras. In other words, if $H^{\infty}|_{S} \neq h^{\infty}|_{S}$ then $H^{\infty}|_{S} \neq \hat{B}|_{S}$ where B is any closed algebra such that $H^{\infty} \subseteq B \subseteq L^{\infty}$. Indeed, every such algebra B contains C, the space of continuous functions in L^{∞} . If $\hat{B}|_S = H^{\infty}|_S$ then by the Baire category theorem, there is a constant $M < \infty$ so that if $f \in \hat{B}$ then there is an $h \in \hat{H}^{\infty}$ with $f|_S = h|_S$ and $||h||_{\infty} \leq M||f||_{\infty}$. If $g \in h^{\infty}$, then the Cesàro means, $\sigma_n(g)$, are continuous and so $\sigma_n(g)|_S = h_n|_S$ for some $h_n \in H^\infty$ with $||h_n||_\infty \leq M||\sigma_n(g)||_\infty \leq M||g||_\infty$. Since H^{∞} is closed under normal convergence on D, if h is a (normal) cluster point of $\{h_n\}$, then $h \in H^{\infty}$ and $h|_S = g|_S$. For this reason, we say S is a nondiscriminating set for H^{∞} if $H^{\infty}|_{S} = h^{\infty}|_{S}$.

We note that if $H^{\infty}|_S = h^{\infty}|_S$ then S must be a Blaschke sequence. For if S is not a Blaschke sequence, then the restriction map from H^{∞} to $H^{\infty}|_S$ is one-to-one. By the closed graph theorem, there would exist a bounded projection from L^{∞} onto H^{∞} , which is false [7]. A sequence S is called an interpolation sequence if $H^{\infty}|_S = l^{\infty}(S)$, the space of all bounded sequences of complex numbers. Clearly, if S is an interpolation sequence, then $H^{\infty}|_S = h^{\infty}|_S$. We will characterize nondiscriminating sets in terms of interpolation sequences.

A measure σ , defined on D, is called a Carleson measure if there is a constant $C < \infty$ such that for any $\epsilon > 0$ and any $\alpha_0 \in [0, 2\pi]$, if $Q = \{re^{i\alpha} : 1 - \epsilon < r < 1 \text{ and } \alpha_0 < \alpha < \alpha_0 + \epsilon\}$ then $\sigma(Q) \leq C\epsilon$. Let $\rho(z, w) = |(z - w)/(1 - \overline{w}z)|$ be the pseudohyperbolic metric on D. Carleson [1] proved that $\{z_n\}_{n=1}^{\infty}$ is an interpolation

Received by the editors August 21, 1981 and, in revised form, December 7, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30D50, 31A05.

Key words and phrases. Interpolation, Carleson measures.

¹The first author is supported in part by an NSF grant.

sequence if and only if $\inf_{m} \prod_{n=1; n \neq m}^{\infty} \rho(z_n, z_m) > 0$. Equivalently (see [5, p. 287]), $\{z_n\}_{n=1}^{\infty}$ is an interpolation sequence if and only if

- (1) there is a $\delta > 0$ so that $\rho(z_n, z_m) \ge \delta > 0$ for all n, m with $n \ne m$, and
- (2) the measure $\sum (1-|z_n|)\delta_{z_n}$ is a Carleson measure, where δ_{z_n} denotes point mass at z_n .

It is not hard to see that a sequence S is a finite union of interpolation sequences if and only if $\mu_S \equiv \sum_{z_n \in S} (1 - |z_n|) \delta_{z_n}$ is a Carleson measure [9, p. 608]. If S is a Blaschke sequence, let B_S denote the canonical Blaschke product with zero set S and let $N_{\delta}(S) = \{z : \rho(z, S) < \delta\}$. By the work in [4], S is a finite union of interpolation sequences if and only if for each $\epsilon > 0$, there exists a $\delta > 0$ so that for each $z_n \in S$, the component of $\{z : |B_S(z)| < \delta\}$ containing z_n is contained in $\{z : \rho(z, z_n) < \epsilon\}$.

THEOREM 1. If $H^{\infty}|_S = h^{\infty}|_S$, then S is the union of a finite number of interpolation sequences.

PROOF. By the Baire category theorem, there is a constant $C < \infty$ such that if $f \in h^{\infty}$ there exists $h \in H^{\infty}$ with $f|_{S} = h|_{S}$ and $||h||_{\infty} \le C||f||_{\infty}$. If S is not a finite union of interpolation sequences, we can find linear fractional transformations τ_n of D onto D such that $B_S \circ \tau_n$ converges to zero, uniformly on compact subsets of D. For if $\tau_{\lambda}(z) = (z - \lambda)/(1 - \overline{\lambda}z)$ and if $Q(\lambda) = \{re^{i\alpha} : 1 - |\lambda| < r < 1 \text{ and arg } \lambda < \theta < (\arg \lambda) + 1 - |\lambda| \}$ then

$$\sum_{k=1}^{\infty} 1 - |\tau_{\lambda}^{-1}(z_k)|^2 = \sum_{k=1}^{\infty} \frac{(1 - |z_k|^2)(1 - |\lambda|^2)}{|1 - \overline{\lambda}z_k|^2}$$

$$\geq \sum_{z_k \in Q(\lambda)} \frac{1 - |z_k|^2}{1 - |\lambda|^2} \cdot \frac{1}{5}$$

$$\geq \frac{1}{10} \frac{\mu_S(Q(\lambda))}{1 - |\lambda|}.$$

So if μ_S is not a Carleson measure we can choose λ_n so that $\lim_n \sum_k (1-|\tau_{\lambda_n}^{-1}(z_k)|^2) = \infty$. Since $\{\tau_{\lambda_n}^{-1}(z_k)\}_{k=1}^{\infty}$ are the zeros of $B_S \circ \tau_{\lambda_n}$, $B_S \circ \tau_{\lambda_n}$ converges to zero uniformly on compact subsets of Δ as $n \to \infty$.

Let B_n be a finite partial product of $B_S \circ \tau_n$ such that $\{B_n\}$ converges to zero uniformly on compact subsets of Δ . For each $f \in h^{\infty}$, let $S_n(f)$ be the unique element of least norm in H^{∞} that agrees with f on the zeros of B_n . By the Baire category argument above, applied to $f \circ \tau_n$, we conclude $||S_n(f)||_{\infty} \leq C||f||_{\infty}$. Since the C-ball of H^{∞} is compact in the weak-* topology, by the Tychonoff product theorem, the set of maps from the unit ball of h^{∞} into the C-ball of H^{∞} is compact under pointwise convergence. Hence the net $\{S_n\}$ has a subnet $\{S_{n_n}\}$ with the property that $\{S_{n_{\alpha}}(f)\}\$ is convergent, in the weak-* topology, for every f in the unit ball of h^{∞} . Since $S_{n_{\alpha}}(\lambda f) = \lambda S_{n_{\alpha}}(f)$ for $\lambda \in \mathbb{C}$, this subnet converges pointwise on all of h^{∞} . Let S(f) denote the (weak-*) limit of $S_{n_{\alpha}}(f)$, for $f \in h^{\infty}$. Since $S_n(f+g) - S_n(f) - S_n(g)$ is bounded by $2C(||f||_{\infty} + ||g||_{\infty})$ and vanishes on the zeros of B_n , $S_{n_\alpha}(f+g) - S_{n_\alpha}(f) - S_{n_\alpha}(g)$ converges weak-* to 0. We conclude S(f+g)=S(f)+S(g) and hence S is linear. Likewise if $f\in H^{\infty},\ f-S_n(f)$ is bounded and vanishes on the zeros of B_n and hence f = S(f). Hence S is a bounded linear projection of h^{∞} onto H^{∞} , which is impossible. This proves μ_S is a Carleson measure, and the theorem follows.

REMARK. If S is the union of M interpolation sequences then for ϵ small enough, each component of $N_{\epsilon}(S)$ contains M or fewer elements of S.

\ THEOREM 2. Let S be the union of a finite number of interpolation sequences. Then $H^{\infty}|_{S} = h^{\infty}|_{S}$ if and only if for ϵ sufficiently small, there is a function f analytic and bounded by 1 on $N_{\epsilon}(S)$ with $f(z) = \overline{z}$, for all $z \in S$.

PROOF. Suppose such an f exists. Choose $\delta>0$ such that if $z_n\in S$ then the component of $N_\delta(S)$ containing z_n is contained in $\{z\colon \rho(z,z_n)<\epsilon/2\}$. Let C_j be a component of $N_\delta(S)$ and let $\{w_1,\ldots,w_k\}=S\cap C_j$. Let $\varphi(z)=(z-w_k)/(1-\overline{w}_kz)$ and suppose $h\in h^\infty$. Write $h(\varphi^{-1}(z))=h_1(z)+h_2(\overline{z})$ where h_1 and h_2 belong to H^2 and $h_2(0)=0$. A simple estimate of the Poisson kernel shows that if $|z|<\frac{1}{2}$, then $|h_j(z)|<3||h||_\infty$. Now if $g(z)=(f(\varphi^{-1}(z))-\overline{w}_k)/(1-w_kf(\varphi^{-1}(z)))$ then $|g(z)|<\frac{1}{2}$ if $|z|<\epsilon/2$ by Schwarz's lemma, and $g(\varphi(w_i))=\overline{\varphi(w_i)}$ for $1\le i\le k$. Let $H_j(z)=h_1(\varphi(z))+h_2(g(\varphi(z)))$. Then H_j is analytic on $N_\delta(S), |H_j(z)|<6||h||_\infty$ and $H_j(w_i)=h(w_i)$ for $1\le i\le k$. Since $\{z\colon |B_S(z)|<\eta\}\subset N_\delta(S)$ for small η , we may define H on $\{z\colon |B_S(z)|<\eta\}$ by $H(z)=H_j(z)$ if $z\in C_j$. By a theorem of Carleson (see e.g. [3, p. 203]) there is a function $K\in H^\infty$ with $K|_S=H|_S=h|_S$.

Conversely, suppose $H^{\infty}|_{S} = h^{\infty}|_{S}$. As before there is an $M < \infty$ such that for each $h \in h^{\infty}$, there is an $f \in H^{\infty}$ with $f|_{S} = h|_{S}$ and $||f||_{\infty} \leq M||h||_{\infty}$. By hypothesis, S is a finite union of interpolation sequences. So that for ϵ sufficiently small, if $z_{n} \in S$, then $\{z \colon \rho(z, z_{n}) < 1/M\}$ contains the component of $N_{\epsilon}(S)$ to which z_{n} belongs. For each component C_{j} of $N_{\epsilon}(S)$, choose one $z_{n_{j}} \in S \cap C_{j}$ and $f_{j} \in H^{\infty}$ with $f_{j}|_{S} = ((\overline{z} - \overline{z}_{n_{j}})/(1 - z_{n_{j}}\overline{z}))|_{S}$ and $||f_{j}||_{\infty} \leq M$. By Schwarz's lemma, $|f_{j}(z)| \leq M\rho(z, z_{n_{j}})$ and so $|f_{j}(z)| < 1$ on C_{j} . Define f on $N_{\epsilon}(S)$ by

$$f(z) = \frac{f_j(z) + \overline{z}_{n_j}}{1 + z_{n_j} f_j(z)}$$

for $z \in C_j$, $j = 1, 2, \ldots$ Then f is analytic on $N_{\epsilon}(S)$, |f(z)| < 1 on $N_{\epsilon}(S)$ and $f|_{S} = \overline{z}|_{S}$.

Since $\overline{z} = z$ when z is real, the following corollary obtains, by Theorems 1 and 2.

COROLLARY 1. If S is contained in the interval (-1,1) then $H^{\infty}|_{S} = h^{\infty}|_{S}$ if and only if μ_{S} is a Carleson measure.

COROLLARY 2. If S is the union of two interpolation sequences then $H^{\infty}|_{S} = h^{\infty}|_{S}$.

PROOF. Choose $\delta > 0$ so that each component of $N_{\delta}(S)$ contains at most two elements of S. If z_1 and z_2 are any two points in D then $\rho(\overline{z}_1,\overline{z}_2) = \rho(z_1,z_2)$. By Pick's theorem, there is an $f \in H^{\infty}$ with $||f||_{\infty} \leq 1$ and $f(z_j) = \overline{z}_j$ for j = 1,2. By Theorem 2, $H^{\infty}|_S = h^{\infty}|_S$.

COROLLARY 3. If $H^{\infty}|_{S} = h^{\infty}|_{S}$ then there is a bounded linear operator T from h^{∞} into H^{∞} such that $(Tf)|_{S} = f|_{S}$ for all $f \in h^{\infty}$.

PROOF. By Theorem 1, S is a finite union of interpolation sequences. In [2], there is constructed a projection P of H^{∞} into H^{∞} such that $(Ph)|_{S} = h|_{S}$ and if $g|_{S} = h|_{S}$ then Ph = Pg. Since $H^{\infty}|_{S} = h^{\infty}|_{S}$, there is a constant $M < \infty$ so that for each $f \in h^{\infty}$, there is an $h \in H^{\infty}$ with $h|_{S} = f|_{S}$ and $||h||_{\infty} \leq M||f||_{\infty}$. Define Tf = Ph. It is easy to verify that this defines the desired operator.

To find a geometric condition equivalent to $H^{\infty}|_{S} = h^{\infty}|_{S}$ when S is a finite union of interpolation sequences, we note the following. If μ_{S} is a Carleson measure, then $H^{\infty}|_{S} = h^{\infty}|_{S}$ if and only if for ϵ sufficiently small, if E is a component of $N_{\epsilon}(S)$, if $z_{n} \in S \cap C$ and if $E = \{(z - z_{n})/(1 - z_{n}z) \colon z \in S \cap C\}$ then the interpolation problem

(1)
$$f \in H^{\infty}, \quad ||f||_{\infty} < 1/\epsilon, \quad f(z) = \overline{z} \quad \text{for } z \in E$$

has a solution. Indeed if $H^{\infty}|_{S} = h^{\infty}|_{S}$, let $f \in H^{\infty}$ with

$$f|_{S} = (\overline{z} - \overline{z}_{n})/(1 - z_{n}\overline{z})|_{S}$$

and $||f||_{\infty} \leq 1/\epsilon$. Then $g(z) = f((z+z_n)/(1+\overline{z}_nz))$ solves the interpolation problem. The converse has a proof very similar to the proof of Theorem 2. If the interpolation problem (1) always has a solution, choose $\delta > 0$ so that if $z_n \in S$ then $\{z \colon \rho(z,z_n) < \epsilon\}$ contains the component of $N_{\delta}(S)$ to which z_n belongs. For each component C_j of $N_{\delta}(S)$ choose $z_{n_j} \in C_j \cap S$ and $f_j \in H^{\infty}$ with $||f_j||_{\infty} \leq 1/\epsilon$ and $f_j(z) = \overline{z}$ for $z \in \{(z-z_{n_j})/(1-\overline{z}_{n_j}z) \colon z \in S \cap C_j\}$ (a possibly smaller set than that required in the interpolation problem (1)). By Schwarz's lemma, $|f_j(z)| < 1$ on C_j . Let

$$f(z) = \frac{f_j \left(\frac{z - z_{n_j}}{1 - \overline{z}_{n_j} z}\right) + \overline{z}_{n_j}}{1 + z_{n_j} f\left(\frac{z - z_{n_j}}{1 - \overline{z}_{n_i} z}\right)}$$

for $z \in C_j$. Then f is analytic on $N_{\delta}(S)$, $f|_S = \overline{z}|_S$ and |f(z)| < 1 on $N_{\delta}(S)$. By Theorem 2, $H^{\infty}|_S = h^{\infty}|_S$. The Pick-Nevanlinna interpolation theorem (see e.g. [8]) gives a geometric condition equivalent to the solution of the interpolation problem (1). Alternatively, we deduce the following corollary.

COROLLARY 4. $H^{\infty}|_{S} = h^{\infty}|_{S}$ if and only if μ_{S} is a Carleson measure and there is an $\epsilon > 0$ such that if w_{1}, \ldots, w_{k} are in S and belong to the same component of $N_{\epsilon}(S)$ and if $\alpha_{i} = (w_{i} - w_{k})/(1 - \overline{w}_{k}w_{i})$, the Lagrange interpolating function

$$f(z) = \sum_{i=1}^k \overline{\alpha}_i \prod_{\substack{j=1\\j \neq i}}^k \frac{z - \alpha_j}{\alpha_i - \alpha_j} = C_1 z + \dots + C_{k-1} z^{k-1}$$

satisfies $|C_j| \leq 1/\epsilon$ for $j = 1, \ldots, k-1$.

Corollary 4 follows easily from the above remarks and the following lemma.

LEMMA. For each positive integer N, there is a $\delta_N > 0$ such that for any $E = \{z_1, \ldots, z_N\}$ contained in $\{z: |z| < \frac{1}{2}\}$ and any polynomial $Q(z) = C_0 + C_1 z + \cdots + C_{N-1} z^{N-1}$ we have

$$\inf\{||Q - B_E h||_{\infty} \colon h \in H^{\infty}\} \ge \delta_N \max_{0 \le j \le N-1} |C_j|.$$

PROOF OF THE LEMMA. If not, there are polynomials $Q_k(z) = C_0^{(k)} + C_1^{(k)}z + \cdots + C_{N-1}^{(k)}z^{N-1}$ with $\max_{0 \le j \le N-1} |C_j^{(k)}| = 1$ and sets $E_k = \{z_1^{(k)}, \dots, z_N^{(k)}\}$ and $h_k \in H^{\infty}$ such that $\lim_{k \to \infty} ||Q_k - B_{E_k}h_k||_{\infty} = 0$. By taking subsequences, we may suppose there is a polynomial Q of degree at most N-1, a Blaschke product B of degree N and an $h \in H^{\infty}$ such that Q_k converges to Q, B_{E_k} converges to B

and h_k converges to h, uniformly on compact subsets of D. Thus Q = Bh which is impossible. This proves the lemma.

Chapters 10 and 11 of [6], for example, give various techniques for computing the Lagrange interpolating function. Since we only need to prove that the coefficients are bounded by a constant which can be allowed to depend on the number of interpolation points k, an efficient test can be based on Aitken's lemma [6, p. 204] as follows. Let f_n be the unique polynomial of degree at most n-1 such that $f_n(w_i) = \overline{w_i}$, $1 \le i \le n$. Let $A_n(w_1, \ldots, w_n)$ be the coefficient of z^{n-1} in f_n . Clearly

$$f_n(z) = f_{n-1}(z) + A_n(w_1, \dots, w_n) \prod_{i=1}^{n-1} (z - w_i).$$

Since $|w_i| < 1$, by induction the coefficients of f_1, \ldots, f_k are bounded by a constant (depending on k) if and only if $\max\{|A_1(w_1)|, \ldots, |A_k(w_1, \ldots, w_k)|\}$ is bounded by a constant depending only on k. The coefficients A_k can be computed recursively as follows. Clearly $A_1(w_i) = \overline{w_i}$. The reader can easily prove by induction, or deduce from Aitken's lemma, that

$$A_n(w_1,\ldots,w_n) = \frac{A_{n-1}(w_1,\ldots,w_{n-2},w_n) - A_{n-1}(w_1,\ldots,w_{n-1})}{w_n - w_{n-1}}.$$

An efficient computational scheme to compute $A_1(w_1), \ldots, A_k(w_1, \ldots, w_k)$ requires only k(k-1)/2 divisions.

The analytic functions are the harmonic functions which satisfy the Cauchy-Riemann equations. This motivates the next corollary. It says that if $H^{\infty}|_{S} = h^{\infty}|_{S}$ then for δ sufficiently small, the elements of S in each component of $N_{\delta}(S)$ are almost on a straight line.

COROLLARY 5. Suppose $H^{\infty}|_{S} = h^{\infty}|_{S}$. If $\{x_{n}, y_{n}, z_{n}\}_{n=1}^{\infty}$ is any sequence of triples from S with $\rho(x_{n}, y_{n}) \to 0$ and $\rho(y_{n}, z_{n}) \to 0$ then

$$\arg\left(\frac{z_n-y_n}{x_n-y_n}\right)^2\to 0$$

as well. Here arg denotes the principal determination $-\pi < \arg \theta \le \pi$.

PROOF. Write $x_n=y_n+\epsilon_n,\ z_n=y_n+\delta_n,\ \alpha_n=(x_n-y_n)/(1-\overline{y}_nx_n)=\epsilon_n/(1-|y_n|^2-\epsilon_n\overline{y}_n),\ \text{ and }\ \beta_n=(z_n-y_n)/(1-\overline{y}_nz_n)=\delta_n/(1-|y_n|^2-\delta_n\overline{y}_n).$ By the above remarks

$$A_3(0,\alpha_n,\beta_n) = \left(\frac{\overline{\alpha}_n}{\alpha_n} - \frac{\overline{\beta}_n}{\beta_n}\right) / (\alpha_n - \beta_n)$$

is bounded. Since $\alpha_n \to 0$ and $\beta_n \to 0$ and

$$\frac{\overline{\alpha}_n}{\alpha_n} - \frac{\overline{\beta}_n}{\beta_n} = \frac{\overline{\epsilon}_n}{\epsilon_n} \left(1 + \frac{\alpha_n}{\epsilon_n} (\overline{\epsilon}_n y_n - \epsilon_n \overline{y}_n) \right) - \frac{\overline{\delta}_n}{\delta_n} \left(1 + \frac{\beta_n}{\delta_n} (\overline{\delta}_n y_n - \delta_n \overline{y}_n) \right),$$

we must have $\overline{\epsilon}_n/\epsilon_n - \overline{\delta}_n/\delta_n \to 0$. Thus $\arg((z_n - y_n)/(x_n - y_n))^2 \to 0$.

For example if $\{x_n\}$ is an interpolation sequence contained in (-1,1) and if $S = \{x_n + i\epsilon_n, x_n + \epsilon_n, x_n : n = 1, 2, 3, ...\}$ then if ϵ_n converges to zero sufficiently fast, S is the union of three interpolation sequences, but $H^{\infty}|_{S} \neq L^{\infty}|_{S}$.

REFERENCES

- L. Carleson, An interpolation theorem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
- P. G. Casazza, R. W. Pengra and C. Sundberg, Complemented ideals in the disk algebra, Israel J. Math. 37 (1980), 76-83.
- 3. P. L. Duren, Theory of H^p spaces, Academic Press, New York and London, 1970.
- J. P. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc. 2 (1970), 544-548.
- 5. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 6. P. Henrici, Elements of numerical analysis, Wiley, New York, 1964.
- 7. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- D. E. Marshall, An elementary proof of the Pick-Nevanlinna interpolation theorem, Michigan Math. J. 21 (1974), 219-223.
- G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

DEPARTMENT OF MATHEMATICS, AGDER DISTRIKTSHOGSKOLE, KRISTIANSAND, NORWAY

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916