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NONDISCRIMINATING SETS FOR if00

DONALD E. MARSHALL,1 ARNE STRAY AND CARL SUNDBERG

ABSTRACT. We characterize the subsets S of the unit disk D with the

property that any function defined on S that has a bounded harmonic exten-

sion to D, must also have a bounded analytic extension to D.

Let D denote the open unit disk in the complex plane, {z: \z\ < 1}. Let ft00

denote the space of bounded harmonic functions on D and let H°° denote the

subspace consisting of the bounded analytic functions on D. We wish to characterize

the subsets S of D with the property that the restriction spaces H°°\s and h°°\s

coincide. Each / G h°° has a nontangential limit f*(el6) almost everywhere with

respect to Lebesgue measure on the boundary of the unit disk 3D, and / is the

Poisson integral of /*. By identifying each / G /i°° with its boundary value function

/*, h°° is isometrically isomorphic to L°°, the essentially bounded measurable

functions on 3D. If S is a subspace of L°°, we let B denote the space of harmonic

extensions of elements of B to D. In keeping with standard practice, we denote

the space of boundary functions of elements of H°° by H°° also, i.e. H°° = H°°.

If if001s # h°°\s then S discriminates between H00 and all other Douglas algebras.

In other words, if H°°\s # h°°\s then H°°\s # B\s where B is any closed algebra

such that H°° CBÇ L00. Indeed, every such algebra B contains C, the space of

continuous functions in L°°. If B\s = H°°\s then by the Baire category theorem,

there is a constant M < co so that if / G B then there is an h G H0" with f\s = h\s

and Halloo < Ai||/||oo- If g G h°°, then the Cesàro means, crn(g), are continuous and

so on(g)\s = hn\s for some hn G H°° with ||/in||oo < M||<7n(0)||oo < MHffH«,. Since

H°° is closed under normal convergence on D, if h is a (normal) cluster point of

{hn), then h G H°° and h\s = g\s- For this reason, we say S is a nondiscriminating

setforiî°oifiî0O|s = /i0O|s.

We note that if H°°\s = h°°\s then S must be a Blaschke sequence. For if S is

not a Blaschke sequence, then the restriction map from i/°° to H°°\s is one-to-one.

By the closed graph theorem, there would exist a bounded projection from L°° onto

H°°, which is false [7]. A sequence S is called an interpolation sequence if iî°°|s =

Z°°(5), the space of all bounded sequences of complex numbers. Clearly, if S is an

interpolation sequence, then //"Is = h°°\s- We will characterize nondiscriminating

sets in terms of interpolation sequences.

A measure a, defined on D, is called a Carleson measure if there is a constant

C < co such that for any e > 0 and any Qo G [0,27r], if Q = {rexa : 1 — e < r <

1 and ctQ < a < a.Q + e} then o(Q) < Ce. Let p(z,w) = \(z — w)/(l — wz)\ be the

pseudohyperbolic metric on D. Carleson [1] proved that {2n}"=1 is an interpolation
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sequence if and only if infm Yln=i-,n^mPÍZn>Zm) > 0- Equivalently (see [5, p. 287]),

{zn}n=i is an interpolation sequence if and only if

(1) there is a 6 > 0 so that p(zn, zm) > 6 > 0 for all n, m with n^m, and

(2) the measure £)(1 — |2n|)¿z„ is a Carleson measure, where 6Zn denotes point

mass at zn.

It is not hard to see that a sequence 5 is a finite union of interpolation sequences

if and only if ps = J2Z eS(l — |2n|)¿ín is a Carleson measure [9, p. 608]. If S

is a Blaschke sequence, let Bs denote the canonical Blaschke product with zero

set S and let Ng(S) = {z: p(z,S) < 6}. By the work in [4], S is a finite union of

interpolation sequences if and only if for each € > 0, there exists a 8 > 0 so that

for each zn G S, the component of {z: \Bs(z)\ < 6} containing zn is contained in

{z: p(z,zn)<e}.

THEOREM 1. If H°°\s = h°°\s, then S is the union of a finite number of
interpolation sequences.

PROOF. By the Baire category theorem, there is a constant C < co such that if

feh°° there exists h G £T°° with /|s = h\s and pH«, < C||/||oo. If S is not a finite

union of interpolation sequences, we can find linear fractional transformations rn

of D onto D such that Bs ° t„ converges to zero, uniformly on compact subsets of

D. For if i\(z) = {z- X)/(l - \z) and if Q(\) = {reia: 1 - |X| < r < 1 and argX <

0<(argX) + l-|X|} then

f,    |T-ir_i|2    f (l-k|2)(l-|X|2)2^ 1 - |tx   (zk)\   = 2^-h—Érr-j5-
k=i fc=i |l-X0fc|2

^    ^    l-kfc|2   1

2fc€Q(X)   1~IX|2      5

^1^(00))-10  1-|X|  '

So if ps is not a Carleson measure we can choose Xn so that limn^fc(l — \T\„(zk)\2)

= co. Since {7x1(^A:)}fc0=i are the zeros of Bs ° T\n, Bs ° t\„ converges to zero

uniformly on compact subsets of A as n —► co.

Let Bn be a finite partial product of Bs o rn such that {Bn} converges to zero

uniformly on compact subsets of A. For each / G h00, let Sn(f) be the unique

element of least norm in H°° that agrees with / on the zeros of Bn. By the Baire

category argument above, applied to /ot„, we conclude HSni/)!!» < CU/Hoo- Since

the C-ball of H°° is compact in the weak-* topology, by the Tychonoff product

theorem, the set of maps from the unit ball of h°° into the C-ball of i/°° is compact

under pointwise convergence. Hence the net {Sn} has a subnet {£>„„} with the

property that {SUa(f)} is convergent, in the weak-* topology, for every / in the

unit ball of h00. Since SUa(\f) = X5„a(/) for X G C, this subnet converges pointwise

on all of h°°. Let S(f) denote the (weak-*) limit of Sn<t(f), for / G h°°. Since

Sn{f + g) — Sn(f) - Sn(g) is bounded by 2(7(11/1100 + HffH«,) and vanishes on the
zeros of Bn, Sna(f + g) — Sna(f) — Sna(g) converges weak-* to 0. We conclude

S(f + g) = S(f) + S(g) and hence S is linear. Likewise if / G H00, f - Sn(f) is

bounded and vanishes on the zeros of Bn and hence / = S(f). Hence S is a bounded

linear projection of h°° onto H°°, which is impossible. This proves ßs is a Carleson

measure, and the theorem follows.
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REMARK. If S is the union of M interpolation sequences then for e small

enough, each component of N€(S) contains M or fewer elements of S.

\ THEOREM 2. Let S be the union of a finite number of interpolation sequences.

Then H00] s = h°°\s if and only if for e sufficiently small, there is a function f analytic

and bounded by 1 on Ne(S) with f(z) = z, for all z G S.

PROOF. Suppose such an / exists. Choose 6 > 0 such that if zn G S then the

component of Ns(S) containing zn is contained in {z: p(z,zn) < e/2}. Let Cj be a

component of Ng(S) and let {wi,...,Wk} = SnCj. Let <p(z) = (z — Wk)/(l — Wkz)

and suppose h G h00. Write h(<p~1(z)) = hi(z) + h2{z) where hi and h2 belong

to H2 and h2(0) = 0. A simple estimate of the Poisson kernel shows that if \z\ <

\, then \hj(z)\ < 3p||oo. Now if g(z) = (/(^(¿»-^/(l--^/(^(z))) then

\g(z)\ < 5 if \z\ < e/2 by Schwarz's lemma, and g(<p(wi)) = ip(w¿) for 1 < i < k. Let

Hj(z) = h1(<p(z)) + h2{g(<p(z)))- Then Hj is analytic on NS(S), \Hj(z)\ < 6p||oo and

Hj(wx) = h(wi) for 1 < i < k. Since {z: \Bs(z)\ < n} C Ns(S) for small 77, we may

define H on {z: \Bs{z)\ < n} by H(z) = H3(z) if z G Cj. By a theorem of Carleson

(see e.g. [3, p. 203]) there is a function KeH°° with K\s = H\s = h\S-

Conversely, suppose if°°|s = h°°\s- As before there is an M < 00 such that

for each /i G h00, there is an / G tf°° with /|s = h\s and \\f\\x < M\\h\\x. By
hypothesis, S is a finite union of interpolation sequences. So that for e sufficiently

small, if zn e S, then {z: p(z,zn) < 1/M} contains the component of Ne(S) to

which zn belongs. For each component Cj of Ne(S), choose one znj G S C\Cj and

fj e H°° with fj\s = ((z-znj)/(l -znjz))\s and \\fjW«, < M. By Schwarz's lemma,

\fj{z)\ < Mp(z,znj.) and so \f3{z)\ < 1 on Cj. Define / on Ne{S) by

A;     1 + ^/^)

for 2 G C,, j = 1,2,....   Then / is analytic on NC(S), \f{z)\ < 1 on ATe(S) and

/|s=2|s-
Since 2 = 2; when z is real, the following corollary obtains, by Theorems 1 and

2.

COROLLARY 1. If S is contained in the interval (—1,1) then H°°\s = h°°\s if

and only if p,s is a Carleson measure.

COROLLARY 2. If S is the union of two interpolation sequences then H°°\s =

h°°\s-

PROOF. Choose 6 > 0 so that each component of Ng(S) contains at most two

elements of S. If z\ and z2 are any two points in D then p(z~i,Z2) = p(z\,Z2)- By

Pick's theorem, there is an / G H°° with ||/||oo < 1 and f(zf) = Zj for j = 1,2. By

Theorem 2, if°°|s = /i°°|s.

COROLLARY 3. IfH°°\s = /i°°|s then there is a bounded linear operator T from

h°° into H°° such that (Tf)\s = f\s for all f G h°°.

PROOF. By Theorem 1, S is a finite union of interpolation sequences. In [2],

there is constructed a projection P of H°° into H°° such that (Ph)\s = h\s and if

9¡s = h\s then Ph = Pg. Since H°°\s = ^°°|s, there is a constant M < 00 so that

for each / G h00, there is an h G H00 with h\s = /|s and p||„ < M||/||oo. Define

Tf = Ph. It is easy to verify that this defines the desired operator.
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To find a geometric condition equivalent to Hx\s = h°°\s when 5 is a finite union

of interpolation sequences, we note the following. If //g is a Carleson measure, then

B°°|s = hx\s if and only if for e sufficiently small, if E is a component of Ne(S),

if zn e S n C and if E = {(z — zn)/(\ — znz): z G S n C} then the interpolation

problem

(1) feH°°,    ||/||oo<l/e,       f(z) = z   for * G E

has a solution. Indeed if if°°|s = /i°°|s, let / G H°° with

f\s = (z-zn)/{l-znz)\s

and ||/||oo < 1/e- Then g(z) = f((z + zn)/(\ + znz)) solves the interpolation problem.

The converse has a proof very similar to the proof of Theorem 2. If the interpolation

problem (1) always has a solution, choose S > 0 so that if zn G 5 then {z: p(z,zn) <

e} contains the component of Ng(S) to which zn belongs. For each component Cj

of NS{S) choose zU] G Cj n S and fj G H°° with |j/,-||oo < 1/e and /,■(*) = 2 for

z e {(z — znj)/(l — znjz): z e S n Cy} (a possibly smaller set than that required in

the interpolation problem (1)). By Schwarz's lemma, \fj(z)\ < 1 on Cj. Let

Í z-zn  \

i+^/(f^)
for 2 G Gy Then / is analytic on NS(S), f\s = z\s and |/(2r)| < 1 on NS(S). By

Theorem 2, H°°\s = ^°°|s. The Pick-Nevanlinna interpolation theorem (see e.g. [8])

gives a geometric condition equivalent to the solution of the interpolation problem

(1). Alternatively, we deduce the following corollary.

COROLLARY 4. H°°\s = h°°\s if and only if ps is a Carleson measure and there

is on e > 0 such that if wi,...,Wk are in S and belong to the same component of

Ne(S) and if ai = (wí — Wk)/(l — WkWi), the Lagrange interpolating function

satisfies \Cj\ < 1/e for j = 1,..., k — 1.

Corollary 4 follows easily from the above remarks and the following lemma.

Lemma.   For each positive integer N, there is a 6n > 0 such that for any E =

{zi,...,zn} contained in {z: \z\ < ^} and any polynomial Q(z) = Co 4-C\ZH-h

Cn-\zn~1 we have

MiWQ-BEhWoc-.heH^yÖN    max    \CA.
0<j<N—l

PROOF OF the Lemma. If not, there are polynomials Qk(z) = C0fc) + C[kh +

■■■ + C{k)_1zN-1 with maxo^xTv-i |C5fc)| = 1 and sets Ek = {z[k),...,zff} and

hk e H°° such that lim*;-,«, ||Qfc — BEkhk\\x, = 0. By taking subsequences, we may

suppose there is a polynomial Q of degree at most N — 1, a Blaschke product B

of degree N and an fee H°° such that Qk converges to Q, Bsk converges to B
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and hk converges to h, uniformly on compact subsets of D. Thus Q = Bh which is

impossible. This proves the lemma.

Chapters 10 and 11 of [6], for example, give various techniques for computing the

Lagrange interpolating function. Since we only need to prove that the coefficients

are bounded by a constant which can be allowed to depend on the number of

interpolation points k, an efficient test can be based on Aitken's lemma [6, p. 204]

as follows. Let /„ be the unique polynomial of degree at most n — 1 such that

fn(vJi) = Wi, 1 < i < n. Let An(wi,...,wn) be the coefficient of zn~x in /„. Clearly

n-l

fn(z) = fn-l(z) + An(w1, ...,Wn) [J (Z - Wi).
t=l

Since \wi\ < 1, by induction the coefficients of /j,..., fk are bounded by a constant

(depending on k) if and only if max{|Ai(tüi)|,..., |Afc(ty!,..., Wk)\} is bounded by a

constant depending only on k. The coefficients Ak can be computed recursively as

follows. Clearly Ai(tu¿) = ü7¿. The reader can easily prove by induction, or deduce

from Aitken's lemma, that

„   , ,,       An-1(wi,...,Wn-2,Wn)-An-1(w1,---,Wn-l)
An(w1,...,wn) =-.

wn-wn^

An efficient computational scheme to compute Ai(u>i),... ,Ak(wi,.. .,Wk) requires

only k(k —1)/2 divisions.

The analytic functions are the harmonic functions which satisfy the Cauchy-

Riemann equations. This motivates the next corollary. It says that if H°°\s =

h°°\s then for 6 sufficiently small, the elements of 5 in each component of Ng(S)

are almost on a straight line.

Corollary 5. Suppose H°°\s = h°°\s. If {xn,yn,zn}^=l is any sequence of

triples from S with p(xn, yn) —► 0 and p(yn, zn) —► 0 then

fzn-yn\

\xn      unJ

as well. Here arg denotes the principal determination —n < argf? < n.

PROOF. Write xn = yn + en, zn = yn + 6n, an = (xn-yn)/(l-ynxn) =

<W(! - \Vn\2 - ^nVn\ and ßn = (zn - yn)/(l -ynzn) = 6n/(l - \yn\2 - Snyn). By

the above remarks

A3(0,an,ßn) = ( Hi Jh W -ßn)
\Ctn       PnJ

is bounded. Since an —* 0 and ßn —► 0 and

an      ßn       ¿ni\   .   Ctn,_ _   A      6nf.   ,   ßn,-? c -   A
— - -f- = —    1 + — {€nyn - (-nVn)    - J"    1 + -T-tfnVn ~ SnVn) h
Ctn       ßn       £nV en J      On\ 0n J

we must have ê„/e„ - Sn/6n -* 0. Thus a.Tg((zn - yn)/{xn - Vn))2 -* 0.

For example if {xn} is an interpolation sequence contained in (—1,1) and if S =

{xn + ien,xn + en,xn: n = 1,2,3,...} then if e„ converges to zero sufficiently fast,

S is the union of three interpolation sequences, but if°°|s / L°°|g.
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