A ZERO-ONE, BOREL PROBABILITY WHICH ADMITS OF NO COUNTABLY ADDITIVE EXTENSIONS

LESTER E. DUBINS¹

ABSTRACT. There is a subsigma-field of the Borel subsets $\mathcal B$ of the unit interval which supports a countably additive, two-valued, probability which cannot be extended to $\mathcal B$ so as to remain countably additive.

This note notes the existence of a countably additive probability P defined for a sigma-field of Borel subsets of \mathbf{R}^{∞} which satisfies this peculiar property: If $\omega = (\omega_1, \omega_2, \ldots) \in \mathbf{R}^{\infty}$ is P-distributed, then, for *every* real number t, with P-probability $1, \omega_n = t$ for some n.

Formally, let E_t be the set of $\omega \in \mathbf{R}^{\infty}$ such that $\omega_n = t$ for at least one positive integer n, and let \mathcal{U} be the sigma-field generated by the family $\{E_t, t \in \mathbf{R}\}$.

PROPOSITION 1. There is one, and only one, countably additive probability P defined on \mathcal{U} such that $P(E_t) = 1$ for all t.

PROOF. As is easily verified, there is one, and only one, finitely additive probability P_1 , defined on the field \mathcal{F} generated by the E_t such that $P_1(E_t) = 1$ for all t. Let $F_i \in \mathcal{F}$, $F_{i+1} \subset F_i$, $1 \le i < \infty$ with $\inf P_1(F_i) = \epsilon > 0$. To see that P_1 is countably additive, it is only necessary to see that $\bigcap F_i$ is nonempty. To this end, note first that $\epsilon = 1$, so $P(F_i) = 1$ for all i. Now call a sequence G_1, G_2, \ldots a selection if, for each n, G_n is $E_{t(n)}$, where $t(1), t(2), \ldots$ is a sequence of indices, and then verify: (a) if G_1, G_2, \ldots is any selection, then $\bigcap G_n$ is nonempty; and (b) there is a selection G_1, G_2, \ldots such that $\bigcap G_n \subset \bigcap F_i$. \square

For each real number t and positive integer n, let $E_{t,n}$ be the set of all infinite sequences whose nth coordinate has the value t, and let \mathcal{V} be the sigma-field generated by the collection of all $E_{t,n}$. Since, for each t, E_t is the union of the $E_{t,n}$, $E_t \in \mathcal{V}$, so $\mathcal{U} \subset \mathcal{V}$.

A probability Q on a sigma-field is *purely finitely additive* if there is a denumerable collection of elements of the sigma-field, each of Q-probability zero, whose union has Q-probability one.

LEMMA 1. Let Q be a probability defined on V, or on any W which includes V, and suppose that $Q(E_t) = 1$ for a nondenumerable set of t. Then Q is purely finitely additive.

PROOF. For fixed n, the set of $E_{t,n}$ are disjoint and, therefore, the set, T_n , of t such that $E_{t,n}$ has positive Q-probability is countable. Consequently, the union, T, of the T_n is also countable. So there certainly is a t not in T. For such a t, $E_{t,n}$ has Q-probability zero for all n, but their set-theoretic union, namely E_t , has Q-probability 1. \square

Received by the editors December 21, 1981 and, in revised form, January 20, 1982. 1980 Mathematics Subject Classification. Primary 28A05, 28A35, 60A35.

¹Research supported by National Science Foundation Grant MCS-80-02535.

274 L. E. DUBINS

THEOREM 1. Let I be any complete, separable, metrizable space with a continuum of points. Then there is a (\mathcal{U}, P) where : (a) \mathcal{U} is a subsigma-field of the Borel subsets \mathcal{B} of I; (b) P is a countably additive, two-valued probability defined on \mathcal{U} ; (c) every probability on \mathcal{B} which agrees with P on \mathcal{U} is purely finitely additive.

PROOF OF THEOREM 1. For $I = \mathbf{R}^{\infty}$, Proposition 1, together with Lemma 1, implies the conclusion. The conclusion for any I follows for, as is well known, $(I, \mathcal{B}(I))$ is isomorphic to $(\mathbf{R}^{\infty}, \mathcal{B}(\mathbf{R}^{\infty}))$.

ACKNOWLEDGEMENTS. I thank Dev Basu who first told me about a countably additive P' on \mathcal{U} under which the E_t are mutually independent and nontrivial which, therefore, cannot be extended to be countably additive on $\mathcal{B}(\mathbf{R}^{\infty})$ since L_2 of such a P' is nonseparable. I also thank Benjamin Weiss who recently revived my interest in this phenomenon.

University of California, Berkeley, California 94720