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A ZERO-ONE, BOREL PROBABILITY WHICH ADMITS
OF NO COUNTABLY ADDITIVE EXTENSIONS

LESTER E. DUBINS!

ABSTRACT. There is a subsigma-field of the Borel subsets B of the unit
interval which supports a countably additive, two-valued, probability which
cannot be extended to B so as to remain countably additive.

This note notes the existence of a countably additive probability P defined for
a sigma-field of Borel subsets of R® which satisfies this peculiar property: If w =
(w1, ws, ...) € R is P-distributed, then, for every real number ¢, with P-probability
1, w, =t for some n.

Formally, let E; be the set of w € R® such that w, =t for at least one positive
integer n, and let U be the sigma-field generated by the family {E:,t € R}.

PROPOSITION 1. There is one, and only one, countably additive probability P
defined on U such that P(E;) =1 for allt.

PROOF. As is easily verified, there is one, and only one, finitely additive
probability P;, defined on the field ¥ generated by the E; such that P;(E;) =1 for
allt. Let F; € #, Fiy1 C Fi, 1 <1 < oo with inf Py(F;) = € > 0. To see that P,
is countably additive, it is only necessary to see that () F; is nonempty. To this
end, note first that e = 1, so P(F;) =1 for all .. Now call a sequence G;,Ga,...
a selection if, for each n, Gy, is Ey(y), where t(1),¢(2),... is a sequence of indices,
and then verify: (a) if G1,Ga,... is any selection, then [ Gy, is nonempty; and (b)
there is a selection G,,Gy,... such that VG, cNF;. O

For each real number ¢ and positive integer n, let E, ,, be the set of all infinite
sequences whose nth coordinate has the value ¢, and let V be the sigma-field
generated by the collection of all E; ,. Since, for each t, E, is the union of the
Et,m E; e v, solUcCY.

A probability @ on a sigma-field is purely finitely additive if there is a denumerable
collection of elements of the sigma-field, each of @-probability zero, whose union
has @Q-probability one.

LEMMA 1. Let @ be a probability defined on V, or on any W which includes V,
and suppose that Q(E:) = 1 for a nondenumerable set of t. Then Q is purely finitely
additive.

PROOF. For fixed n, the set of E, , are disjoint and, therefore, the set, T,,, of
t such that E; ,, has positive Q-probability is countable. Consequently, the union,
T, of the T, is also countable. So there certainly is a ¢t not in T. For such a ¢,
E: » has Q-probability zero for all n, but their set-theoretic union, namely E;, has
Q-probability 1. 0O
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THEOREM 1. Let I be any complete, separable, metrizable space with a continuum
of points. Then there i3 a (U, P) where : (a)U is a subsigma-field of the Borel subsets
B of I; (b) P is a countably additive, two-valued probability defined on U; (c) every
probability on B which agrees with P on U s purely finitely additive.

PROOF OF THEOREM 1. For I = R, Proposition 1, together with Lemma
1, implies the conclusion. The conclusion for any I follows for, as is well known,
(I, B(I)) is isomorphic to (R*, B(R®)). O
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