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JORDAN-MORPHISMS IN »ALGEBRAS

KLAUS THOMSEN
■

Abstract. As a continuation of Stormer's work on Jordan-morphisms in C*-alge-

bras we consider Jordan-morphisms <p from "-algebras 31 into the "-algebra B(%),

and assume that <jd(31) is again a "-algebra. We then establish the existence of three

mutually orthogonal central projections P¡, i = 1,2,3, in <p( )" such that Px + P2 +

P3 = / and

<p(-)^i is a morphism,

<p( ■ )P2 is an antimorphism.

P} is the largest projection such that q)(-)P2 is a morphism, as well as an

antimorphism.

Uniqueness is also shown. The theorem improves a result of Kadison and Stornier.

Our proofs are self-contained.

1. Introduction. Let 31 be an associative *-algebra, and let * denote the *-opera-

tion, i.e., a — a* is involutary, antilinear, and satisfies

(ab)* = b*a*,       a, ft G 31.

Let % be a complex Hilbert space, and let B(%) be the *-algebra of all bounded

operators on %. A linear mapping <p: 3Í, -^ 3t2 between *-algebras is said to be a

Jordan-morphism if

<p(a*) = <p(a)*

and

cp({a,b}) = {<p(a),<p(b)},        ö.fteti,

where {a, ft} = ab + ba is the anticommutator. Let <p: 31, -» 312 be linear satisfying

<p(a*) = <p(a)* for a G 21. We then say that <p is a morphism (resp., an antimor-

phism) if tp(ab) = tp(a)(p(b) (resp., <p(ab) = tp(ft)<p(a)) for a, ft G 31.

In this note we prove the following result:

Theorem. Let % be a *-algebra, and let <p: 31 -* B(%) be a Jordan-morphism.

Assume that <p(3t) is again a *-algebra.

Then there exist three mutually orthogonal projections P¡, i = 1,2,3, in the centre of

the W*-algebra generated by <p(3t), such that:

(1) <p(-)Px is a morphism, and not an antimorphism;

(2) <p( • )P2 is an antimorphism, and not a morphism;

(3) P3 is the largest projection such that q>(-)P3 is a morphism, as well as an

antimorphism;
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(4) I = Px © P2 © P3.
Conversely, the above conditions, (l)-(4), determine the central projections P¡

(uniquely).

The decomposition problem for Jordan-morphisms was first considered by Jacob-

son and Rickart [1], Kadison [2, 3] and by Stornier [4]. Our theorem extends

Stormer's result only at one point: the domain is allowed to be an arbitrary

*-algebra instead of a C*-algebra. But we feel that our technique is nonetheless of

some interest.

The existing proofs of the decomposition theorem all go back to the key paper of

Jacobson and Rickart, in which the domain of the morphism is required to be a

matrix algebra; later results have proofs which reduce to this case. Our proof,

instead, reduces to a special case for the range where the range (or its closure) is a

prime ring, e.g. a factor. We are then able to use ideas of Herstein's [6] to complete

the proof.

2. A lemma. The key to our proof is the following basic product formula:

(5)       [<p(ab)-<p(a)<p(b)][<p(cd)-cp(d)<p(c)]=0,       a, ft, c, de 21.

Of course, (5) follows easily from the theorem [4]. But the point here is that it is

possible to derive (5) directly from the assumptions (rather than the conclusion) in

the theorem. The following lemma is therefore central:

Lemma. Let 31 be a *-algebra, and let cp: 31 -» B(%) be a Jordan-morphism such

that <p( 31 ) is a *-algebra.

Then (<p(ab) — q>(a)<p(b))((p(cd) — <p(d)(p(c)) = 0 for all quadruples of elements

a, ft, c, d in 31.

3. Two reductions in the proof of the Lemma.

Reduction 1. We may assume that the pair (21, <p) is unital, i.e., 21 has a unit 1,

and (p(l) = /.

If (21, <p) is not unital, we may adjoin a unit in the usual manner: 31 = {(A, a):

X G C, a G 21}, and define <j>(X, a) = XI + y(a).

Reduction 2. We need only consider the case where <p( 21 )" is a factor.

In the general case we may consider the C*-algebra <p( 21 ). Let P be the set of pure

states of <p( 21 ), and let -n = 2®e/> wu be the corresponding atomic representation. We

recall that (<na, %a) denotes the GNS-representation associated to the state u, and it

is known (easy) that m is faithful [5, Theorem 2.3.15]. For each u G P, the map

ira ° <p is a Jordan-morphism into the factor wu((p(2I))" = ww(<p(2I))".

4. Technical facts.

Fact 1. Let 9H be a factor, and let x, y be a pair of elements in 911. Assume that

xGJLy = {0}. Then it follows that x = 0 or y = 0.

Proof. If Cx (resp., Cy) denotes the respective central support, it follows im-

mediately that CXCV = 0.

Definition 4.1. Let 2Í, B(%), <p be as in the Theorem. For a, ft G 31 we define

ah — i[<p(ab) — <p(a)<p(b)]    and    ah = i[y(ab) — <p(ft)<p(a)].
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Definition 4.2. For a *-algebra 21 we set

8,fl= {aEK-.a* = a}.

Fact 2. For any pair of elements a, ft in 2ija it follows that ab G B(%)sa, and

ah G í(3C)Ja.

Proof. Exploit the cancellations in the formulas for (ah)* — ab, and (ah)* — ah.

5. Proof of the Lemma. We assume that 1 G 21, tp(l) = /, and that 9(31)" is a

factor. From [5, p. 208] we have the following identity:

(6) abah = 0   for all a, ft G 3Í.

From [6] we take, directly, the product formula:

(7) ah<p(ab-ba)<p(c)cp(ab-ba)ah = Q    for all a, ft, c G 21.

Formulas (6) and (7) may in fact be derived by pure algebra, using only that <p

preserves the anticommutator.

Now, by (7), and Fact 1, we have that ah(p(ab — ba) = 0 or <p(aft — ba)ah = 0,

whenever a, ft G 21. Assume first that ab<p(ab — ba) = 0. Then

<p(ab — ba) = 2tp(aft) — <p(aft + ba)

= 2<p(aft) - [<p(a)<p(b) + <p(b)q>(a)] = -i{a" + ah).

Multiplying through by ab, and using (6), we get (a*)2 = abq>(ab — ba) = 0.

Similarly, the second alternative yields the identity (ah)2 = 0. So, for all a, ft in 21,

we have (ab)2 = 0 or (ah)2 = 0. (The argument up to this point is close to [6].)

We can now use Fact 2 to derive the next relation:

(8) ah = 0   or   ah = 0   for a, b G 31 „.

Hence,

(9) ab<p(c)ab = 0    for   a, ft G 21 Ja and c G 21.

Polarizing (9), we see that ad(p(c)ab + aby(c)ad = 0, when a, ft, d G 21 sa, and

c G 21. Using first (8), and then Fact 1, we get

(10) ad = 0   or   ab = 0   for any triple of elements a, ft, d G 2tja.

Polarizing adab = 0, we get

(11) adcb + cdab = 0    for all a, ft, c, de %sa.

As before, the alternatives in (10) imply that each term in (11) is zero, so that

(12) abcd = 0   for all a, b,c,de%sa.

From (12) the Lemma follows easily.

6. Proof of the Theorem. Define

6B, = {<p(ab) - <p(a)<p(b): a, ft G 21}

and

&2 = {<p(ab) - <p(b)<p(a): a, b G «}.
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Let Ex, E2 and £3 denote the orthogonal projections onto F\A^¿ kerA, H^^kerA

and n^e(íuíí kerA, respectively.

If PA is the projection onto Ran A, we have

£, =glb{l-PA:A G6E,},       E2 = glb{/ - PA: A G $2}    and

£3 = glb{/-Py4:A G (î, U <?,2}.

Hence, I ~ Ex= \ub{PA: A Go?,}. Similarly, I - E2 = \ub{PA: A G &2), and

I - E3 = \ub{PA:A Gf£, U 6E2}.

Clearly, £,69(2!)", i = 1,2,3. But the range spaces of E„ i= 1,2,3, are

univariant under the action of <p(2t), so we also have E¡ G <p(2í )', i = 1,2,3. Hence,

the E¡ 's are central.

We have £3 <6 £,, and £3 < £2. In view of the Lemma, (I — EX)(I — E2) = 0.

Moreover, (I — EX)A2 = (I — E2)AX =f 0 for all A, G &x, and A2 G 6B2. Therefore,

(/- £,)©(/- E2)<I - £3, and [( J - £,)©(/- £2)]A = A for all A in tE, U

6£2. Alternatively, PA^(I- £,) © (/ - £2) for all A G S, U 6£2.

As a consequence, / — £3 = (/ — £,)©(/ — £2), and Px = I — E2, P2 = I — £,,

and £3 = £3. This concludes the proof of the existence part.

Uniqueness. Let 3ff, i = 1,2,3, be central projections satisfying conditions (l)-(4)

in the Theorem. Clearly, then X3 = £3, X2 =£ / - £3, and Xx < / - P3. Condition (4)

yields X3 = P3, and *, © X2 = I - P3.

We have X2 *s £2, and Px = / - £2 « / - X,; and therefore Px = PX(I - £3) =£

(I - X2)(I - P3) = Xx.
In the same way we obtain P2 < X,. A second application of condition (4) yields

P, = Xx andP2 = *i-
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