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FACTORISATION OF CHARACTERISTIC FUNCTIONS

ON NONCOMMUTATTVE GROUPS

AUBREY WULFSOHN

Abstract. A characteristic function, without idempotent factors, on a separable

compact group is decomposed, modulo characters, as a product of indecomposable

characteristic functions and an infinitely divisible characteristic function.

A continuous normalized positive definite function on a topological group G will

be called a characteristic function. Denote by | <p |2 the characteristic function

defined by | <#> \2(g) = | <j>(g) \2 for all g in G. The characteristic function identically 1

will be called degenerate. A continuous homomorphism of G to C*, the group of

complex numbers modulo 1, will be called a character. We are concerned with the

factorisation of a characteristic function as a product of characteristic functions

where we write <p = <£,<i>2 if <>(g) = <t>x(g)<b2(g) for all g in 6. A characteristic

function <p is called indecomposable if it cannot be expressed as a product of two

other characteristic functions, idempotent if <j> = d<2 and infinitely divisible if for

each n G N one may write </> = IIf=1 <i>;"' for some characteristic function <jf"\ each

f^(") = 0("\ Denote the set of factors of d> by F^, the set of indecomposable factors of

<#> by IFç and the subgroup of G generated by {g: <j>(g) =£ 0} by G^. Denote left Haar

measure on a separable locally compact group by dg.

For the purposes of factorisation we shall consider two characteristic functions <b,

and d»2 to be equivalent if <bx = (p2x where x is a character. When G is commutative a

characteristic function is the Fourier transform of a probability measure on the dual

group G and equivalent characteristic functions are the Fourier transforms of

shift-equivalent measures on G [4].

A. I. Khinchin [2] showed that the characteristic function of a probability

distribution on R can be represented as <b24>3 where <p2 is a denumerable product of

indecomposable factors, <i>3 has no indecomposable factors and is necessarily in-

finitely divisible. K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan [3]

extended this-result to a characteristic function on an arbitrary separable locally

compact commutative group decomposing it as <bx4>2<¡>3 where <bx is idempotent, (¡>2

and <b3 as above. When the group has no compact subgroups there is no proper

idempotent factor.
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The factorisation can be translated to the positive-definite matrices [a,- ■] =

[<f>(g,g~')] for sequences (g¡) in G. The product of characteristic functions corre-

sponds to coefficientwise multiplication of the matrices, and matrices [ajJ] and [/Î,. •]

correspond to equivalent characteristic functions if and only if a,y = ßuCfi. for

c„ Cj G C*.

In §1 we consider the cancellation of idempotent factors from a characteristic

function on a topological group and find conditions determining whether a char-

acteristic function has idempotent factors or not. In §2 we prove Khinchin's

factorisation theorem for a characteristic function, without idempotent factors, on a

separable compact group. We have not been able to prove Khinchin's theorem for

characteristic functions with idempotent factors, neither have we been able to

construct a counterexample. In §3 we show why, in the commutative case, any

characteristic function can be factorised as above.

1. Idempotent factors of a characteristic function on a topological group.

Proposition 1. Let G be a topological group. If \p is an idempotent factor of a

characteristic function ¿> of G then ^ — Xh where H is an open and closed subgroup of

G. The maximal idempotent factor, i.e. that with the minimal support and so the least

degenerate, is Xg ■ One factorises <f> as Xg^o where <p0 is the restriction of § to G^.

Proof. An idempotent is necessarily of the form x w for a subset H of G. Since the

factors are required to be continuous it follows that H is open and closed and, since

'Káíi) = 1> M £2) = 1 implies i>(gxg2) = 1, [1, 32.7], it follows that H must be an

open (and closed) subgroup. For X/y to be a factor of <b, necessarily Xh(s) ^ 0

whenever <b(g) ¥= 0, so H D G^. By construction G^, is an open subgroup and so also

closed. By [1, 32.43], <i>0 is also a characteristic function for G.

Corollary 1. The characteristic function <b has nondegenerate idempotent factors if

and only if G^ ¥= G.

Proposition 2. Let <p be an infinitely divisible characteristic function on a group G.

It has a nondegenerate idempotent factor if and only if it has zeros.

Proof. The function <p, = lim„ | <¡> |2" is the idempotent factor, where | <¡> \ (g) =

I <b(g) I for all g in G. Indeed, <p<p is a characteristic function and, since <b is infinitely

divisible, its repeated square roots will exist and be characteristic functions, Further-

more <p, =Xoy

This generalises Lemma 4.2 of [5], proved there for compact G.

2. Characteristic functions, without idempotent factors, on a separable compact

group.

Lemma 1. Let G be a separable compact group and (<pn) a sequence of characteristic

functions such that fG \ <p„(g) |2 dg -» 1 as n -» 00. Then there exists a sequence (x„) of

characters such that <¡>„x„ converges uniformly to the degenerate characteristic function

as n -» oo.
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Proof. The proof is contained explicitly in the proof of [5, Lemma 4.1].

For a characteristic function <p, without idempotent factors, on a compact group

we define the Khinchin functional A^ on F^, which measures 'departure' from the

degenerate characteristic functional, by N^(\¡/) = -/clog | ̂ (g) | dg. It is well defined

and convergent since G is generated by a sequence of elements (g,) such that

<f>(g;) =£ 0 for all i, and since G is compact, N^ is bounded.

Proposition 3. Let § be a characteristic functional without idempotent factors on a

separable compact group G. //"vV 4>2, $ £ E$

^N^^2) = N^X) + N^2),

(n)N^)>fG(l-\^Kg)\)dg>0,
(iii) N^ip) = 0 if and only if\p is equivalent to the degenerate characteristic function.

Proof. Properties (i) and (ii) are obvious. Property (iii) follows since A^Xxg) = 0

and A^,(x) = 0 for any character x; if N^ty) — 0 then

/ (1 - |*(g) I2) dg ̂  2 f (1 - | *(g) |) dg = 0
JG JG

by (ii), and, by Lemma 1, there exists a character x such that i^x is degenerate.

Lemma 2. Let </> be a characteristic function without idempotent factors on a

separable compact group G and let (\¡/¡) be a sequence of factors of <b such that for all

n G N the product II "=I i^, is also a factor o/d>. Then there exist characters x, such that

n,"=i $iXi converges to a characteristic function as n -» oo.

Proof. 2N^,) < N^) so 2«fcA^(^.) and tytfl?!**,-) converge to zero as

k -» oo. By Lemma 1 there exist (xk) such that (Xk-\^T=k'Pi) converges to the

degenerate characteristic function as k -» oo. Thus, absorbing each x*-i in the

preceding finite product, II"=1 i^x, converges to a characteristic function as n -> oo.

Proposition 4. Let <p be a real-valued characteristic function on a compact group.

Every sequence in F^ has a convergent subsequence.

Proof. The set F^ is equicontinuous since, for ip G F^,

I Hg) ~ *(*) I2 < 2(1 - Re^g-1*)) < 2(1 - *(g-'A)).

The proposition follows from the Arzela-Ascoli theorem.

Lemma 2 is the noncommutative version of [4, Theorem III.5.3], Proposition 4 is

an analogue of Corollary III.5.2.

Proposition 5. Let G be a separable compact group. Any characteristic function

without idempotent factors can be factorized, modulo a character, as a product of a

denumerable number of indecomposable characteristic functions and a characteristic

function with no indecomposable factors.

Proof. If <p does not have any indecomposable factors the proposition holds.

Suppose 4> has indecomposable factors. Write SuplTV^i//): \p G IF^} = 8(<j>). One

can decompose </> as \pxXx where A^(^,) > \8(<¡>) and decompose the characteristic

function Xn_x as \p„Xn where N^(\pn) s* ^(A,,.,), for n — 2,3,_ If Xk has no
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indecomposable factors for some k the process terminates and the proposition holds.

When the process does not terminate there exist, by Lemma 2, characters x, such

that II <i-,x, converges. So N^(ipn) -> 0 as n — oo. So also Xn will converge to a

characteristic function X as n -* oo. If X has an indecomposable factor ip then

4> E FK for all n and so N^) < 8(X„) for all n; as 8(Xn) =£ 2N^n+x) - 0 as

m — oo, it follows from Proposition 3 that \f/ is a character.

Lemma 3. Lei <p be a characteristic function, with no indecomposable factors and with

no idempotent factors, on a separable compact group G. There exists a sequence of

decompositions (Dn) of \p such that v — inf„sup{ 1 — |^(g)| : \p e Dn, g E G} =0.

Proof. For any decomposition D of <f> let

^D = sup{l - |*(g)| :iPED,g(EG}.

For any characteristic function t, if »// G £T then 1 — | <Kg) Is* 1 ~ I T(g) I for all g

in G. One can arrange an array of decompositions

{Dn-4> = <!>„,, ■■■*„.*.)

such that pßii - p as « - oo, 1 - | <*>„,/g) |^ 1 - | <*>„,.(?) | for all g G G, 1 <;' =s kn,

and 1 — | <bn x(g) | == »»o for some g. Using Lemma 2, <p can be decomposed as <¡>x<p2,

where r>2 = limnIIyiL2 Xn.j^n.j^ f°r an array (x,,.,) of characters of G, and such that

1 — I <t>\(g) |= ''for some g. Since <i>, and <i>2 are again decomposable v must be 0.

An array of decompositions (Dn) such that v = 0 will be called uniformly

infinitesimal.

Corollary 2. // a characteristic function <b on a compact separable group has

neither idempotent nor indecomposable factors then {g: <j>(g) ¥= 0} = G^.

Proof. Since G^ = G^p it is sufficient to prove that if | <f> \2(gx) > 0 and | <i> |2(g2)

> 0 then | (j> |2(g,g2) > 0. Choose a uniformly infinitesimal array of decompositions

(*rVr "<íW )n °f ^- F°r each of the decompositions | <i>|2(g) = | <!>„,, |2(g) • • •

| <bnka |2(g)." Thus | <¡> |2(g) > 0 if and only if, for any », | <*>„ j |2(g) > 0, 1 <j < kn,

and so also if and only if lim„(« — | (¡>nJ \2(g)) < oo for/ G N. The corollary follows

using [5, Lemma 3.6].

Proposition 6. A characteristic function <j>, with neither idempotent nor indecom-

posable factors, on a compact separable group G, is, modulo a character, infinitely

divisible.

Proof. By Corollary 1, G = G^. We denote Hh'lg)(Hh~l)<t>(g))'] by K(g, h),

adding suffixes if required. By Lemma 3 we can find a uniformly infinitesimal array

(•rVi ' ' ' "tVa )n °f decompositions of <b such that, for large enough n, 1 — | <t>nj(g) \

is as small as we like. By [6, Lemma 3.5],

| KmJ(g, h) |< 2(1 - | 4,,/A-') |)1/2(1 - | fc;/(g) l)'72^^1)^^))"1

for n G N, 1 <j < kn. So lim„ sup, | 1 — Kn 7(g, h) | = 0. Using the procedure of [6,

Lemma 4.2] we can define L(g, h) = Log K(g, h) and prove it to be continuous and

positive-definite on G X G. As in [6, Lemma 4.3], L(h, g"1) is an additive 2-cocycle.
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It is a coboundary since H2(G, R) = {0} and the real and imaginary parts of L can

be considered separately. Hence L(g, h) = \¡/(h'lg) — \p(h~l) — \p(g) for some con-

tinuous conditionally positive-definite function >p on G. By [5, Theorem 4.1], e* is

infinitely divisible. As in the proof of [6, Theorem 5.1], e* — <j>x for some character x

of G.

Corollary 3. On a separable compact group, if a characteristic function has no

idempotent factors then it has indecomposable factors whenever it has zeros.

Proof. Suppose <f> has zeros but no indecomposable factors. By Proposition 6 it is

infinitely divisible so by Proposition 2 it cannot have zeros.

Theorem. Let G be a separable compact group and <b a characteristic function on G

with no idempotent factors. Then <p can be decomposed, modulo a character, as a

product of indecomposable characteristic functions and an infinitely divisible character-

istic function.

Proof. The theorem follows from Propositions 5 and 6.

3. Commutative groups. The method in [3] for proving Lemma 2 for a locally

compact separable commutative group is to use [4, Corollary III.5.2], the analogue of

our Proposition 4, to prove the existence of characters x, such that products II, \p¡Xi

converge, and [4, Theorem III.5.2] to prove that all such convergent products are

equivalent. Lemma 5 is [4, Theorem III.5.2] with a simpler proof than the original.

Lemma 4. Let G be a complete separable metric commutative group. If <b and \p are

characteristic functions on G such that <¡>4> is the degenerate characteristic function, then

<b and \p are characters.

Proof. Denote the measure corresponding to a characteristic function f by Uç.

Since Pq * jti^ is the unit mass at the neutral element of G, so ¡u,^ and p. must be

point masses. Hence <? and \p are characters.

Lemma 5. Let <f> and ¡p be characteristic functions on a complete separable metric

commutative group. If<pEF^ and \p G F^, then <p is equivalent to \p.

Proof. The lemma follows from Lemma 4. Indeed, if $ = Xttf1 ar,d i> — Xi'P^ then

<í> = XiX2^ so X1X2is degenerate.

Lemma 6. Let <p be a characteristic function on a locally compact separable

commutative group G. Any character on G^ extends uniquely to a character of G.

Proof. Denote the annihilator of G^ in G by AT and identify G^ = G/K with a

Borel section B of G. As an element of B is also an element of G, a character of G^

uniquely determines a character of G.

Let (¡> be a characteristic function on a locally compact separable commutative

group G. By Proposition 1, <b can be factorised as Xc^o- Propositions 5 and 6 hold

for 4>0 on Gj, [3]. By Lemma 6 the characters of G^ occurring in the factorisation

extend to characters of G. Thus <b can be factorised as <i>i^>2^>3 as stated in the

introduction.
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