FACTORISATION OF CHARACTERISTIC FUNCTIONS ON NONCOMMUTATIVE GROUPS

AUBREY WULFSOHN

ABSTRACT. A characteristic function, without idempotent factors, on a separable compact group is decomposed, modulo characters, as a product of indecomposable characteristic functions and an infinitely divisible characteristic function.

A continuous normalized positive definite function on a topological group G will be called a characteristic function. Denote by $|\phi|^2$ the characteristic function defined by $|\phi|^2(g) = |\phi(g)|^2$ for all g in G. The characteristic function identically 1 will be called degenerate. A continuous homomorphism of G to C^* , the group of complex numbers modulo 1, will be called a character. We are concerned with the factorisation of a characteristic function as a product of characteristic functions where we write $\phi = \phi_1 \phi_2$ if $\phi(g) = \phi_1(g)\phi_2(g)$ for all g in G. A characteristic function ϕ is called indecomposable if it cannot be expressed as a product of two other characteristic functions, idempotent if $\phi = \phi^2$ and infinitely divisible if for each $n \in \mathbb{N}$ one may write $\phi = \prod_{i=1}^n \phi_i^{(n)}$ for some characteristic function $\phi^{(n)}$, each $\phi_i^{(n)} = \phi^{(n)}$. Denote the set of factors of ϕ by F_{ϕ} , the set of indecomposable factors of ϕ by IF_{ϕ} and the subgroup of G generated by $\{g: \phi(g) \neq 0\}$ by G_{ϕ} . Denote left Haar measure on a separable locally compact group by dg.

For the purposes of factorisation we shall consider two characteristic functions ϕ_1 and ϕ_2 to be equivalent if $\phi_1 = \phi_2 \chi$ where χ is a character. When G is commutative a characteristic function is the Fourier transform of a probability measure on the dual group \hat{G} and equivalent characteristic functions are the Fourier transforms of shift-equivalent measures on \hat{G} [4].

A. I. Khinchin [2] showed that the characteristic function of a probability distribution on \mathbf{R} can be represented as $\phi_2\phi_3$ where ϕ_2 is a denumerable product of indecomposable factors, ϕ_3 has no indecomposable factors and is necessarily infinitely divisible. K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan [3] extended this result to a characteristic function on an arbitrary separable locally compact commutative group decomposing it as $\phi_1\phi_2\phi_3$ where ϕ_1 is idempotent, ϕ_2 and ϕ_3 as above. When the group has no compact subgroups there is no proper idempotent factor.

Received by the editors December 22, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L50, 43A30; Secondary 22C05.

Key words and phrases. Characteristic function, compact separable group, idempotent factor, indecomposable factor, infinitely divisible factor.

The factorisation can be translated to the positive-definite matrices $[\alpha_{ij}] = [\phi(g_ig_j^{-1})]$ for sequences (g_i) in G. The product of characteristic functions corresponds to coefficientwise multiplication of the matrices, and matrices $[\alpha_{ij}]$ and $[\beta_{ij}]$ correspond to equivalent characteristic functions if and only if $\alpha_{ij} = \beta_{ij}c_ic_j$ for $c_i, c_i \in \mathbb{C}^*$.

In §1 we consider the cancellation of idempotent factors from a characteristic function on a topological group and find conditions determining whether a characteristic function has idempotent factors or not. In §2 we prove Khinchin's factorisation theorem for a characteristic function, without idempotent factors, on a separable compact group. We have not been able to prove Khinchin's theorem for characteristic functions with idempotent factors, neither have we been able to construct a counterexample. In §3 we show why, in the commutative case, any characteristic function can be factorised as above.

1. Idempotent factors of a characteristic function on a topological group.

PROPOSITION 1. Let G be a topological group. If ψ is an idempotent factor of a characteristic function ϕ of G then $\psi = \chi_H$ where H is an open and closed subgroup of G. The maximal idempotent factor, i.e. that with the minimal support and so the least degenerate, is $\chi_{G_{\bullet}}$. One factorises ϕ as $\chi_{G_{\bullet}} \phi_0$ where ϕ_0 is the restriction of ϕ to G_{ϕ} .

PROOF. An idempotent is necessarily of the form χ_H for a subset H of G. Since the factors are required to be continuous it follows that H is open and closed and, since $\psi(g_1) = 1$, $\psi(g_2) = 1$ implies $\psi(g_1g_2) = 1$, [1, 32.7], it follows that H must be an open (and closed) subgroup. For χ_H to be a factor of ϕ , necessarily $\chi_H(g) \neq 0$ whenever $\phi(g) \neq 0$, so $H \supset G_{\phi}$. By construction G_{ϕ} is an open subgroup and so also closed. By [1, 32.43], ϕ_0 is also a characteristic function for G.

COROLLARY 1. The characteristic function ϕ has nondegenerate idempotent factors if and only if $G_{\phi} \neq G$.

PROPOSITION 2. Let ϕ be an infinitely divisible characteristic function on a group G. It has a nondegenerate idempotent factor if and only if it has zeros.

PROOF. The function $\phi_1 = \lim_n |\phi|^{2^{-n}}$ is the idempotent factor, where $|\phi|(g) = |\phi(g)|$ for all g in G. Indeed, $\phi \bar{\phi}$ is a characteristic function and, since ϕ is infinitely divisible, its repeated square roots will exist and be characteristic functions, Furthermore $\phi_1 = \chi_{G}$.

This generalises Lemma 4.2 of [5], proved there for compact G.

2. Characteristic functions, without idempotent factors, on a separable compact group.

LEMMA 1. Let G be a separable compact group and (ϕ_n) a sequence of characteristic functions such that $\int_G |\phi_n(g)|^2 dg \to 1$ as $n \to \infty$. Then there exists a sequence (χ_n) of characters such that $\phi_n \chi_n$ converges uniformly to the degenerate characteristic function as $n \to \infty$.

PROOF. The proof is contained explicitly in the proof of [5, Lemma 4.1].

For a characteristic function ϕ , without idempotent factors, on a compact group we define the Khinchin functional N_{ϕ} on F_{ϕ} , which measures 'departure' from the degenerate characteristic functional, by $N_{\phi}(\psi) = -\int_{G} \log |\psi(g)| dg$. It is well defined and convergent since G is generated by a sequence of elements (g_{i}) such that $\phi(g_{i}) \neq 0$ for all i, and since G is compact, N_{ϕ} is bounded.

PROPOSITION 3. Let ϕ be a characteristic functional without idempotent factors on a separable compact group G. If $\psi_1, \psi_2, \psi \in F_{\phi}$

- (i) $N_{\phi}(\psi_1\psi_2) = N_{\phi}(\psi_1) + N_{\phi}(\psi_2)$,
- (ii) $N_{\phi}(\psi) \ge \int_{G} (1 |\psi(g)|) dg \ge 0$,
- (iii) $N_{\phi}(\psi) = 0$ if and only if ψ is equivalent to the degenerate characteristic function.

PROOF. Properties (i) and (ii) are obvious. Property (iii) follows since $N_{\phi}(\chi_G) = 0$ and $N_{\phi}(\chi) = 0$ for any character χ ; if $N_{\phi}(\psi) = 0$ then

$$\int_{G} (1 - |\psi(g)|^{2}) dg \le 2 \int_{G} (1 - |\psi(g)|) dg = 0$$

by (ii), and, by Lemma 1, there exists a character χ such that $\psi \chi$ is degenerate.

LEMMA 2. Let ϕ be a characteristic function without idempotent factors on a separable compact group G and let (ψ_i) be a sequence of factors of ϕ such that for all $n \in \mathbb{N}$ the product $\prod_{i=1}^n \psi_i$ is also a factor of ϕ . Then there exist characters χ_i such that $\prod_{i=1}^n \psi_i \chi_i$ converges to a characteristic function as $n \to \infty$.

PROOF. $\sum N_{\phi}(\psi_i) \leq N_{\phi}(\phi)$ so $\sum_{i=k}^{\infty} N_{\phi}(\psi_i)$ and $N_{\phi}(\prod_{i=k}^{\infty} \psi_i)$ converge to zero as $k \to \infty$. By Lemma 1 there exist (χ_k) such that $(\chi_{k-1} \prod_{i=k}^{\infty} \psi_i)$ converges to the degenerate characteristic function as $k \to \infty$. Thus, absorbing each χ_{k-1} in the preceding finite product, $\prod_{i=1}^{n} \psi_i \chi_i$ converges to a characteristic function as $n \to \infty$.

PROPOSITION 4. Let ϕ be a real-valued characteristic function on a compact group. Every sequence in F_{ϕ} has a convergent subsequence.

PROOF. The set F_{ϕ} is equicontinuous since, for $\psi \in F_{\phi}$,

$$|\psi(g) - \psi(h)|^2 \le 2(1 - \text{Re}\,\psi(g^{-1}h)) \le 2(1 - \phi(g^{-1}h)).$$

The proposition follows from the Arzela-Ascoli theorem.

Lemma 2 is the noncommutative version of [4, Theorem III.5.3], Proposition 4 is an analogue of Corollary III.5.2.

PROPOSITION 5. Let G be a separable compact group. Any characteristic function without idempotent factors can be factorized, modulo a character, as a product of a denumerable number of indecomposable characteristic functions and a characteristic function with no indecomposable factors.

PROOF. If ϕ does not have any indecomposable factors the proposition holds. Suppose ϕ has indecomposable factors. Write $\sup\{N_{\phi}(\psi): \psi \in IF_{\phi}\} = \delta(\phi)$. One can decompose ϕ as $\psi_1\lambda_1$ where $N_{\phi}(\psi_1) \ge \frac{1}{2}\delta(\phi)$ and decompose the characteristic function λ_{n-1} as $\psi_n\lambda_n$ where $N_{\phi}(\psi_n) \ge \frac{1}{2}\delta(\lambda_{n-1})$, for $n=2,3,\ldots$ If λ_k has no

indecomposable factors for some k the process terminates and the proposition holds. When the process does not terminate there exist, by Lemma 2, characters χ_i such that $\prod \psi_i \chi_i$ converges. So $N_{\phi}(\psi_n) \to 0$ as $n \to \infty$. So also λ_n will converge to a characteristic function λ as $n \to \infty$. If λ has an indecomposable factor ψ then $\psi \in F_{\lambda_n}$ for all n and so $N_{\phi}(\psi) \le \delta(\lambda_n)$ for all n; as $\delta(\lambda_n) \le 2N_{\phi}(\psi_{n+1}) \to 0$ as $n \to \infty$, it follows from Proposition 3 that ψ is a character.

LEMMA 3. Let ϕ be a characteristic function, with no indecomposable factors and with no idempotent factors, on a separable compact group G. There exists a sequence of decompositions (D_n) of ψ such that $\nu = \inf_n \sup\{1 - |\psi(g)| : \psi \in D_n, g \in G\} = 0$.

PROOF. For any decomposition D of ϕ let

$$\nu_D = \sup\{1 - |\psi(g)| : \psi \in D, g \in G\}.$$

For any characteristic function τ , if $\psi \in F_{\tau}$ then $1 - |\psi(g)| \le 1 - |\tau(g)|$ for all g in G. One can arrange an array of decompositions

$$(D_n: \phi = \phi_{n,1} \cdots \phi_{n,k})$$

such that $\nu_{D_n} \to \nu$ as $n \to \infty$, $1 - |\phi_{n,j}(g)| \le 1 - |\phi_{n,1}(g)|$ for all $g \in G$, $1 < j \le k_n$, and $1 - |\phi_{n,1}(g)| = \nu_{D_n}$ for some g. Using Lemma 2, ϕ can be decomposed as $\phi_1 \phi_2$, where $\phi_2 = \lim_n \prod_{j=2}^k \chi_{n,j} \phi_{n,j}$, for an array $(\chi_{n,i})$ of characters of G, and such that $1 - |\phi_1(g)| = \nu$ for some g. Since ϕ_1 and ϕ_2 are again decomposable ν must be 0.

An array of decompositions (D_n) such that $\nu = 0$ will be called uniformly infinitesimal.

COROLLARY 2. If a characteristic function ϕ on a compact separable group has neither idempotent nor indecomposable factors then $\{g: \phi(g) \neq 0\} = G_{\phi}$.

PROOF. Since $G_{\phi} = G_{|\phi|^2}$ it is sufficient to prove that if $|\phi|^2(g_1) > 0$ and $|\phi|^2(g_2) > 0$ then $|\phi|^2(g_1g_2) > 0$. Choose a uniformly infinitesimal array of decompositions $(\phi_{n,1}\cdots\phi_{n,k_n})_n$ of ϕ . For each of the decompositions $|\phi|^2(g) = |\phi_{n,1}|^2(g) \cdots |\phi_{n,k_n}|^2(g)$. Thus $|\phi|^2(g) > 0$ if and only if, for any n, $|\phi_{n,j}|^2(g) > 0$, $1 \le j \le k_n$, and so also if and only if $\lim_n (n - |\phi_{n,j}|^2(g)) < \infty$ for $j \in \mathbb{N}$. The corollary follows using [5, Lemma 3.6].

PROPOSITION 6. A characteristic function ϕ , with neither idempotent nor indecomposable factors, on a compact separable group G, is, modulo a character, infinitely divisible.

PROOF. By Corollary 1, $G = G_{\phi}$. We denote $\phi(h^{-1}g)(\phi(h^{-1})\phi(g))^{-1}$ by K(g, h), adding suffixes if required. By Lemma 3 we can find a uniformly infinitesimal array $(\phi_{n,1} \cdots \phi_{n,k_n})_n$ of decompositions of ϕ such that, for large enough n, $1 - |\phi_{n,j}(g)|$ is as small as we like. By [6, Lemma 3.5],

$$|K_{n,j}(g,h)| \le 2(1-|\phi_{n,j}(h^{-1})|)^{1/2}(1-|\phi_{n,j}(g)|)^{1/2}(\phi_{n,j}(h^{-1})\phi_{n,j}(g))^{-1}$$

for $n \in \mathbb{N}$, $1 \le j \le k_n$. So $\lim_n \sup_j |1 - K_{n,j}(g,h)| = 0$. Using the procedure of [6, Lemma 4.2] we can define $L(g,h) = \operatorname{Log} K(g,h)$ and prove it to be continuous and positive-definite on $G \times G$. As in [6, Lemma 4.3], $L(h, g^{-1})$ is an additive 2-cocycle.

It is a coboundary since $H_2(G, \mathbf{R}) = \{0\}$ and the real and imaginary parts of L can be considered separately. Hence $L(g, h) = \psi(h^{-1}g) - \psi(h^{-1}) - \psi(g)$ for some continuous conditionally positive-definite function ψ on G. By [5, Theorem 4.1], e^{ψ} is infinitely divisible. As in the proof of [6, Theorem 5.1], $e^{\psi} = \phi \chi$ for some character χ of G.

COROLLARY 3. On a separable compact group, if a characteristic function has no idempotent factors then it has indecomposable factors whenever it has zeros.

PROOF. Suppose ϕ has zeros but no indecomposable factors. By Proposition 6 it is infinitely divisible so by Proposition 2 it cannot have zeros.

THEOREM. Let G be a separable compact group and ϕ a characteristic function on G with no idempotent factors. Then ϕ can be decomposed, modulo a character, as a product of indecomposable characteristic functions and an infinitely divisible characteristic function.

PROOF. The theorem follows from Propositions 5 and 6.

- 3. Commutative groups. The method in [3] for proving Lemma 2 for a locally compact separable commutative group is to use [4, Corollary III.5.2], the analogue of our Proposition 4, to prove the existence of characters χ_i such that products $\prod_i \psi_i \chi_i$ converge, and [4, Theorem III.5.2] to prove that all such convergent products are equivalent. Lemma 5 is [4, Theorem III.5.2] with a simpler proof than the original.
- LEMMA 4. Let G be a complete separable metric commutative group. If ϕ and ψ are characteristic functions on G such that $\phi\psi$ is the degenerate characteristic function, then ϕ and ψ are characters.

PROOF. Denote the measure corresponding to a characteristic function ζ by μ_{ζ} . Since $\mu_{\phi} * \mu_{\psi}$ is the unit mass at the neutral element of G, so μ_{ϕ} and μ_{ψ} must be point masses. Hence ϕ and ψ are characters.

LEMMA 5. Let ϕ and ψ be characteristic functions on a complete separable metric commutative group. If $\phi \in F_{\psi}$ and $\psi \in F_{\phi}$, then ϕ is equivalent to ψ .

PROOF. The lemma follows from Lemma 4. Indeed, if $\phi = \chi_1 \psi$ and $\psi = \chi_2 \phi$, then $\phi = \chi_1 \chi_2 \phi$, so $\chi_1 \chi_2$ is degenerate.

Lemma 6. Let ϕ be a characteristic function on a locally compact separable commutative group G. Any character on G_{ϕ} extends uniquely to a character of G.

PROOF. Denote the annihilator of G_{ϕ} in \hat{G} by K and identify $\hat{G}_{\phi} = \hat{G}/K$ with a Borel section B of G. As an element of B is also an element of G, a character of G_{ϕ} uniquely determines a character of G.

Let ϕ be a characteristic function on a locally compact separable commutative group G. By Proposition 1, ϕ can be factorised as $\chi_{G_{\phi}}\phi_0$. Propositions 5 and 6 hold for ϕ_0 on G_{ϕ} [3]. By Lemma 6 the characters of G_{ϕ} occurring in the factorisation extend to characters of G. Thus ϕ can be factorised as $\phi_1\phi_2\phi_3$ as stated in the introduction.

The author wishes to thank Professor K. R. Parthasarathy for suggesting the problem and for his criticism of an earlier version.

REFERENCES

- 1. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin and New York, 1970.
- 2. A. I. Khinchin, Contribution à l'arithmétique des lois de distribution, Bull. Univ. Etat Moscow 1 (1937), 6-17.
- 3. K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan, *Probability distributions on locally compact abelian groups*, Illinois J. Math. 7 (1963), 337-369.
 - 4. K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967.
- 5. _____, Infinitely divisible representations and positive definite functions on a compact group, Comm. Math. Phys. 16 (1970), 148-156.
- 6. K. Schmidt, Limits of uniformly infinitesimal families of projective representations of locally compact groups, Math. Ann. 192 (1971), 107-118.

MATHEMATICS FACULTY, OPEN UNIVERSITY, MILTON KEYNES, MK7 6AA, GREAT BRITAIN