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Abstract. This paper is concerned with almost periodic linear systems of ODE's

and their block diagonalization. The aim is to describe a class of all " best possible"

(partwise isometric) block diagonalizing transformations and to construct two closely

connected functions, a projected trace and its real part, the Liouville function,

playing the same role for a subspace or a subbundle as the usual trace and its real

part play in Liouville's formula. A theorem is proved which says that the projected

trace of an almost periodic system is almost periodic. For the Liouville function of a

one-dimensional spectral subbundle this result was obtained by Sacker and Sell. We

extend it to the case of an invariant subbundle of higher dimension. If a system

admits a Whitney sum invariant decomposition (e.g., a Sacker-Sell spectral de-

composition) then partwise isometric block diagonalizing transformations are possi-

ble. This class includes the transformations of Bylov-Vinograd, Coppel, Palmer, and

Ellis-Johnson. A theorem is proved which says that every partwise isometric

transformation preserves Liouville functions of subbundles and turns them into real

parts of usual block traces. In particular, for almost periodic systems, they remain

almost periodic.

1. Introduction. To display the origin and use of projected traces, Liouville

functions, and partwise isometric transformations, consider briefly the two following

problems.

1.1 Let a hnear system

(1) x = A(t)x,       xEX=RnorC",

be given. For a subspace V C X let F be the corresponding solution subspace:

V= [x(t): x(0) E V}, and V(t) denote the set of these solution values at t, i.e.,

V(t) = {x e X: x = x(t), x(t) G V). Choose a basis xx(t),...,xm(t) in V and let

G = G(t) = Gx.. ,x (i) be the Gram determinant: G — det | (x¡, Xj)\ , where ( , ) is

the scalar product in X. Define the Liouville function ofA(t) on V(t) by

(2) W04|lnG(0=^.

If m = n so that V = V(t) = X, then G = | W|2 where W is the Wronskian, and by

Liouville's formula LA x(t) = Retry4(i). An analogous formula for m < n is to be

found (3.5). It turns out that LAV does not depend on the choice of the basis in V.
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Moreover, for an ODE-flow and its invariant subbundle (2.5, 2.2), LAY is the real

part of the projected trace, a continuous function on the base space (4.1, 4.2). In this

case, if A(t) is almost periodic, so is LAV(t).

1.2 Suppose we want to find " the nicest simplification" of system (1). This means

to transform (1) into a block diagonal system preserving the norms of solutions and

the angles between them at least within each block. Below is the description of all

such transformations.

Let X = Vx + V2 be a direct sum with dim Vk = lk, k= 1,2. Then Vk and Vk(t),

k= 1,2, are defined and X = Vx(t) + V2(t) for every t.

A linear transformation x = S(t)z (we always assume the existence of 5_1 and S)

takes (1) to a system

(3) Z = B(t)Z,       B = S~lAS- S~]S.

This system is called: (i) block-diagonal corresponding to Vk (BD-Vk) if fi =

diag{2?,, B2) and to each x(t) G Vk there corresponds a solution z(t) of the A:th

block of (3), k = 1,2; (ii) Vk-isometric ox partwise isometric (to (1)) if (x(t), x(t)) =

(z(t), z(t)) for x(t), x(t) G Vk, k = 1,2, and all t. So "BB-Vk-isometric" denotes a

system (3) satisfying both (i) and (ii). If (3) is J^-isometric to (1), then we will also

refer to the transformation S(t) as Vk-isometric or partwise isometric.

The proof of the following proposition is left to the reader.

1.3 Proposition. System (3) is BD-J-^ if and only if for every t the first lx column

vectors of the matrix S(t) form a basis in Vx(t) and its last l2 columns do that in V2(t).

Moreover, S(t) is Vk-isometric if and only if these bases are orthonormal.

1.4 Remarks, (a) It follows that ||S(i)ll < 1 for a partwise isometric S(t) where

II • || is Euclidean operator norm, (b) A K^-isometric S(t) always exists; one of the

simplest ways to get it is to pick solution bases in Vk, k = 1,2, apply the Gram-

Schmidt orthonormalization process (separately in Vx(t) and V2(t)), and then take

the obtained vectors as columns of 5(0; in addition, in this case if A(t) is uniformly

bounded, so is S(t) [2, 4, 5]. (c) The same terminology and results are applicable (up

to the obvious changes) to a direct decomposition X = Vx + ■ ■ • + Vm with m > 2.

(d) All transformations such as those by Bylov et al. [2], Coppel [3], Palmer [5], and

Ellis and Johnson [4] are partwise isometric.

As an application of the Liouville function, it will be shown that any system (3)

which is BD-K¿-isometric to (1) has RetrBk(t) == LAVft), k= \,...,m (3.6). In

addition, if (1) is almost periodic and the Vk are subbundles, then the LAy are

almost periodic (6.2, 6.4).

2. Notations. We use the Sacker-Sell concept of a linear skew product flow

restricted to the simplest case we need; see [6] for more details.

2.1 LSPF. Let tr be a flow on a product space W = X X Y where Y is a connected

compact metric space and X = R" or C". This means that m is a continuous mapping

from W X R to W such that ir(w, 0) = w and tt(tt(x, t), s) — tr(x, t + s). The flow

■n is a linear skew-product flow (LSPF) if w has the form -n(x, y, t) — (<j>(x, y, t),

a(y> 0) where o(y, t) = y ■ t is a flow on Y and <p is linear in x.
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2.2 Subbundle. A subbundle F in A' X y is a closed subset of X X Y such that for

each y G Y, (a) the fiber Vy = V(y) = {x G X: (x, y) G V) is a linear subspace of

A and (b) dim Vv = const, on Y. V is tr-invariant if it is an invariant set for the flow

w. If V is a subbundle then (i) there is a (uniquely determined) hermitian projection

P ■ A -« A with range Kv. where Pr is continuous in y on Y\ (ii) for eachy0 G Y there

is a neighborhood U of y0 in 7 such that a basis x,(y),... ,xm(y) in Fv = V(y) can

be chosen to be continuous in U.

2.3 Whitney sum. The notation X X Y = Vx + ■ ■ ■ + Vm (Whitney sum) means that

the Vk are subbundles such that X — Vx(y) + ■ ■ ■ + Vm(y) is a direct sum for every

y G Y. A Whitney sum is tr-invariant if the Vk are 77-invariant, k — 1,..., m.

2.4 Almost periodic flow. A flow o(y, t) = y ■ t on y is minimal if every orbit

{y • f: t G Ä} is dense in Y. A flow a is almost periodic if given e > 0 there is S > 0

such that d(y, z) < 8 implies d(y ■ t, z ■ t) < e for all t G R. If a is almost periodic

and /: Y -» C* is continuous then for each y G y the function r -> f(y ■ t) is Bohr

almost periodic.

2.5 ODE-flow. There is a way to generate an LSPF 77 on A" X y by starting with a

flow a(y, t) — y ■ t on Y. Let L(A) be the set of all linear mappings (operators)

X -* A (by using a standard basis in A one can also view L( X) as the set of all

(n X «)-matrices). Now let .4: T -» L(X) defined by y -» ^ be continuous. Then

for each y 6 7 the mapping r -> Av(t) =AY.t represents a continuous operator-

valued (matrix-valued) function of /. Let <¡>(x, y, t) denote the solution of the initial

value problem

(4„) x = Ay(t)x,       x(0) = x.

Then n(x, y, t) = (<f>(x, y, t), y ■ t) is an LSPF on A X Y. We call it the ODE-flow

described by (4 ) or simply the ODE-flow of(A). Note that if o is almost periodic, so

is every system (4^) (i.e. its matrix A (t)). An individual almost periodic system (1)

can be always included in a minimal almost periodic ODE-flow (4^) [6].

2.6 LP-transformations. A linear transformation x = S(t)z is said to be

Lyapunov-Perron (LP) if S(t), S~\t), and S(t) are (uniformly) bounded. If S(t) is

bounded, then S~\t) is bounded if and only if inf, | det S(t) |> 0.

3. The projected trace and the Liouville function. Let X — R" or C", (,) denote

scalar product, A : X -> X be linear, and F be a linear subspace of X. Then the

hermitian projection P: X -» A", P* = P, with range P — V is uniquely determined

and (PA)V ç V. Therefore the restriction (PA)V = PA \ V: V -» V makes sense and

its trace tr(PA)v is defined.

3.1 Definition. The projected trace of A on Fis given by Tr(^4, V) = tr(PA)v.

3.2 Remark. It is easily seen that tr(A + A*, V) = KeTx(A, V).

Now choose a basis xx,... ,xm in V, put G = det | (x,, x-)| (the Gram determi-

nant) and let Gr(A) denote the determinant obtained from G by replacing its rih row

(xr, xx) ■■■ (xr, xm) by the row (Axr, xx) ■■■ (Axr, xm).

3.3 Lemma. 2¡"= 1 Gr(A)/G = Tr(^4, V) (so the left-hand side does not depend on the

choice of the basis in V).
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Proof. Since (PA)V Ç Fand x,,... ,xm is a basis in V, one has

PAxk = (PA)vxk= ^a^x^       k=l,...,m.

Next, (/íxr, Xj)= (Axr, PXj)= (PAxr, xf) because Pxj — Xj and P* = P. Now

the entries of the rth row in Gr(A) become

m

(Ax„ xj)=(PAxr, Xj)= 2 «;;(i«,, xj>
r=i

so that Gr(^4) can be expanded into 2,airGrj where Grr = G and all the remaining

determinants Gn = 0 because their rth and ith rows are equal. So Gr(A) = arrG and

3.3 follows since %ra„ = tx(PA)v = Tx(A, V).

3.4 Remark. By 3.2, 2%xGr(A + A*)/G = 2KeTx(A, V).

3.5 Lemma. The Liouville function LAV(t) (2) does not depend on the choice of the

basis in V and equals KeTx(A(t), V(t)).

Proof. Look at (2) and differentiate G(t) by rows. Since the xk are solutions to

(1), we have

— (x„xj)= (Axr,xj)+ (xr,Axj)= ((A + A*)xr,Xj).

Therefore G = 2rGr(A + A*). Now 3.5 follows from (2) and 3.4.

3.6 Theorem (see 1.2 and 1.4(c)). Let a system (1) and a direct decomposition

X — Vx + ■ ■ ■ + Vm be given. If a system (3) is BD-Vk-isometric to (1), then for each

block ofB = diag{5,,.. .,Bm), one has

KetxBk(t) = KeTx(A(t),Vk(t)),       k= \,...,m.

In particular, all such systems (3) have the same Re tr Bk(t), k — \,...,m.

Proof. By hypothesis, (3) is the result of a 1^,-isometric transformation x = S(t)z

of (1). Since S(t) preserves scalar products within each subspace Vk(t), it also

preserves Gram determinants: Gx ...x(t) = Gz ....(/)■ Hence the Liouville functions

of both sides are also equal. But the first of them is ReTr(^4, Vk) by 3.5 and the

second is Re tr Bk by Liouville's formula (cf. 1.1).

3.7 Remark. So far S(t) need not be Lyapunov-Perron. The condition of partwise

isometry implies only ||S(/)H * 1 and the existence (but not boundedness) of

S~l(t); it also says nothing about S(t). In §5 S(t) becomes LP.

4. The projected trace on a subbundle. Let F be a subbundle of A" X y so that for

each y G Y the fiber Vv is a linear subspace of X. Next let a mapping^: Y -> L(X):

y -> Av be given so that Av: X — X is linear. Then the projected trace Tx(Ay, V) is

defined for every y G Y.

4.1 Definition. The projected trace of A on V is the function Tr[^, V]: Y -» C

given by Tr[^, V](y) = Tx(Ay, Vy).

4.2 Lemma. If A is continuous on Y, so is Tx[A, V],
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Proof. Pick y0 G Y. In a neighborhood U of y0 in Y one can choose a basis in Vy

depending continuously on y in U. Then its Gram determinant G as well as Gr(A)

are continuous in U. By 3.3 so is Tr(^, Vy) — Tx[A, V](y). In particular Tr[^l, V] is

continuous at y0. Since y0 G Y is arbitrary, 4.2 is proved.

5. ODE-flows with invariant Whitney sums. Let an ODE-flow ir of (4 ) admit a

w-invariant Whitney sum decomposition X X Y = Vx + ■ ■ ■ + Vm (e.g., it may be the

Sacker-Sell spectral decomposition). Recall our "double" notation Vy = V(y) for a

fiber. For a fixed y e. Y one can view Vk(y) as an initial value subspace of X for the

system (4y), so that the notations from 1.1 are applicable (such as Vk(y), a solution

subspace, or Vk(y)(t), the set of corresponding solution values at t).

5.1 Remark. In fact this time Vk(y)(t) = Vk(y ■ t) because Vk is invariant for

"■ = (<!>> y ' 0 and $ Just denotes solutions.

In the following theorem we shorten "F^yFisometric for a fixed y" to "Vk-

isometric".

5.2 Theorem. Let X X Y = Vx + • • • + Vm be a it-invariant Whitney sum de-

composition for the ODE-flow of (4y). Then for each y G y any Vk-isometric transfor-

mation S(t) of the system (4y) is Lyapunov-Perron provided S(t) is uniformly bounded.

Proof. By 1.4(a) and 2.6 the only question is whether inf, | det S(t) |> 0. Suppose

that det S(tj) -* 0 for a sequence {r }. We will denote subsequences again by (ry) if

necessary. Then y • f -» y0 since Y is compact. Let Fk(t) be the orthonormal frame

consisting of the columns of S(t) which span Vk(y ■ t) (1.3, 1.4(c)). Then Fk(tj) -» Fk,

an orthonormal frame in Vk(y0). Fk° spans Vk(y0) because dim Vk(y) = const.

Hence the collection of vectors {/} = UkFk spans the whole space X — Vx(y0)

+ •'*•+ Vm(y0). This implies D0 ¥= 0 where D0 is the determinant of the matrix with

columns {/}. But D0 = lim S(tj) — 0, a contradiction

5.3 Remark. The requirement "S bounded" cannot be omitted; e.g., if m — 1, i.e.,

X X y = F,, then any unitary 5(i) is F,-isometric and ||S(i)ll = IIS-'(OH = 1» but

||S(r)|| can be made arbitrary; the same thing holds for m > 1. However a Vk-

isometric S(t) with S(/) bounded always exists (1.4(b)). Hence by 5.2 a Lyapunov-

Perron Fj.-isometric S(t) exists too.

6. Almost periodic ODE-flow.

6.1 Theorem. Let an ODE-flow it on A" X Y described by (4 ) be almost periodic. If

V is a it-invariant subbundle in A" X y then for every y G Y the projected trace of

Ait) on V (t) is Bohr almost periodic. More explicitly,

(5) 1x(Ay(t),Vy(t))=7x\A,V\(yt)

where Tr[^4F]: Y -» C is continuous.

Proof. Ay(t) = Ay.t by the very notation (2.5), and Vy(t) — Vy.t by 5.1. Now (5)

is merely 4.1. 1x[A, V] is continuous on Y by 4.2 because A is continuous by the

construction (2.5). Therefore Tx[A, V](y ■ t) is Bohr almost periodic (2.4).
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6.2 Corollary. The Liouville function ofAv(t) on Vv(t) is also almost periodic and

LAyV(t) = ReTrf^, V)(y ■ t). This follows from 6.1 and 3.5.

6.3 Remark. For a one-dimensional spectral subbundle this result was proved by

Sacker and Sell [7, p. 351, proof of Theorem 7]. (If dimF= 1 then the Liouville

function is (d/dt)\\<p(t)\\ where <> is a solution of (4J with <i>(0) G Vy.) See also [1]

for the multidimensional case in terms of exponential separation.

6.4 Theorem. Let an ODE-flow ir of(4y) be almost periodic and admit a ir-invariant

Whitney sum decomposition X X Y = Vx + ■ ■ ■ + Vm. Then for each y G Y: (I) any

Vk-isometric transformation x = S(t)z with S(t) uniformly bounded is Lyapunov-

Perron; (II) such transformations exist; (III) all resulting block diagonal systems (3)

(BD- Vk-isometric) have the same real parts of block traces, namely

RetxBk(t) = ReTx[A,Vk](y ■ t),       k= \,...,m,

which are Bohr almost periodic.

The proof follows directly from 5.2, 5.3, 3.6, and 6.1.

Remark. The theorem is applicable to all transformations listed in 1.4(d). In

particular, it is valid for Palmer's [5] and Ellis and Johnson's [4] transformations S

which are constructed not only for individually fixed y G y but are also defined and

continuous on a flow-homomorphic extension of Y.
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