A REMARK ON LINEAR DIFFERENTIAL SYSTEMS WITH THE SAME INVARIANT SUBBUNDLES

ROBERT E. VINOGRAD ${ }^{1}$

Abstract

Given a flow $\sigma(\omega, t)=\omega \cdot t$ on a compact metric space Ω and a continuous $n \times n$-matrix $A(\omega)$, the family of ODE systems $\dot{x}=A(\omega \cdot t) x$ defines a linear skew-product flow on $W=\Omega \times X, X=R^{n}$ or C^{n}. Let $W=U \oplus V$ be a Whitney sum and $P: W \rightarrow W$ be the correspondent projector. Result: the subbundles U and V are invariant for the flows induced by $A(\omega)$ and $B(\omega)$ iff $A(\omega)-B(\omega)$ commutes with $P(\omega)$ for all $\omega \in \Omega$.

As is known (e.g. see [1]), given a flow $\sigma(\omega, t)=\omega \cdot t$ on a space Ω (usually compact metric) and an $n \times n$-matrix $A(\omega)$ which is continuous on Ω, the family of systems

$$
\begin{equation*}
\dot{x}=A(\omega \cdot t) x, \quad \cdot=\frac{d}{d t}, x \in X=R^{n} \text { or } C^{n} \tag{1}
\end{equation*}
$$

naturally defines a flow (so-called LSPF [1]) on the product space $W=\Omega \times X$. Let $W=U \oplus V$ be a Whitney sum subbundle decomposition and $X_{\omega}, U_{\omega}, V_{\omega}$ be corresponding fibers so that $X_{\omega}=U_{\omega} \oplus V_{\omega}$. Then there is an uniquely determined projector $P: W \rightarrow W$ with range $P=U$ and null $P=V$ (i.e. $P(\omega)=P \mid X_{\omega}$ is a continuous projection $X_{\omega} \rightarrow X_{\omega}$ with range $P(\omega)=U_{\omega}$, null $P(\omega)=V_{\omega}$, so that $P(\omega) u=u, P(\omega) v=0$ for $\left.u \in U_{\omega}, v \in V_{\omega}\right)$.

The subbundles U, V are said to be invariant for (1) if every solution of (1) starting in U or V remains in it for all t. If this is the case, we shall say for brevity that P is invariant for (1).

The purpose of the present paper is to establish the following surprisingly simple result.

ThEOREM. P is invariant simultaneously for two systems (1) and

$$
\begin{equation*}
\dot{y}=B(\omega \cdot t) y \tag{2}
\end{equation*}
$$

if and only if $B(\omega)-A(\omega)$ commutes with $P(\omega)$ for all $\omega \in \Omega$.
LEMMA. (i) P is invariant for (1) iff $\tilde{x}(t)=P(\omega \cdot t) x(t)$ is a solution to (1) whenever $x(t)$ is. (ii) If P is invariant for (1), then $\dot{P}(\omega \cdot t)$ exists and (suppressing $\omega \cdot t$)

$$
\begin{equation*}
\dot{P}=A P-P A \text { for all } \omega \text { and } t . \tag{3}
\end{equation*}
$$

(iii) If $P(\omega)$ is a continuous projection on Ω such that $\dot{P}(\omega \cdot t)$ exists and satisfies (3), then P is invariant for (1).

[^0]Proof. In what follows we denote by $\xi(t)$ a solution with $\xi(0)=\xi$.
(i) \rightarrow Pick $u \in U_{\omega}, v \in V_{\omega}$ and consider the solutions $u(t), v(t)$. By assumption, $\tilde{u}(t)=P(\omega \cdot t) u(t), \tilde{v}(t)=P(\omega \cdot t) v(t)$ are also solutions, and we have $\tilde{u}(0)=P(\omega) u=$ $u, \tilde{v}(0)=P(\omega) v=0$. By uniqueness, $\tilde{u}(t) \equiv u(t), \tilde{v}(t) \equiv 0$ which means $u(t) \in U_{\omega \cdot t}$, $v(t) \in V_{\omega \cdot t}$.
\leftarrow Pick any solution $x(t), x(0)=x \in X_{\omega}$; then $x=u+v, u \in U_{\omega}, v \in V_{\omega}$. Since U, V are invariant, we have $u(t) \in U_{\omega \cdot t}, v(t) \in V_{\omega \cdot t}$. Also $x(t)=u(t)+v(t)$, and so $P(\omega \cdot t) x(t)=u(t)$, a solution to (1).
(ii) Fix an arbitrary $\omega \in \Omega$ and a basis x_{1}, \ldots, x_{n} in X_{ω}. Let $X(t)$ be a fundamental matrix of (1) with vector-columns $x_{1}(t), \ldots, x_{n}(t)$. By (i), the invariancy of P implies that $\tilde{X}(t)=P(\omega \cdot t) X(t)$ is again a fundamental matrix of (1). Hence (suppressing t and $\omega \cdot t$) $P=\tilde{X} X^{-1}$ is differentiable and

$$
\dot{P}=\dot{\tilde{X}} X^{-1}+\tilde{X}\left(X^{-1}\right)^{\cdot}=A \tilde{X} X^{-1}-\tilde{X} X^{-1} A=A P-P A
$$

(iii) Let (3) be given and $x(t)$ satisfy (1). Then

$$
(P x)^{-}=\dot{P} x+P \dot{x}=(A P-P A) x+P A x=A P x
$$

i.e. $\tilde{x}=P x$ is a solution to (1). Now (i) implies (iii).

Proof of Theorem. Let $(B-A) P=P(B-A)$ and P be invariant for (1). Then by (ii)

$$
\dot{P}=A P-P A=A P-P A+[(B-A) P-P(B-A)]=B P-P B,
$$

and hence by (iii) P is invariant for (2). Conversely, if P is invariant for both (1) and (2), then by (ii) $A P-P A=\dot{P}=B P-P B$ and so $(B-A) P=P(B-A)$.

Remarks. (a) An obvious generalization for a Whitney sum with $m>2$ addends, i.e., $W=V_{1} \oplus \cdots \oplus V_{m}$ with projectors P_{i} where range $P_{i}=V_{i}$, null $P_{i}=\bigoplus_{k \neq i} V_{k}$, says: V_{1}, \ldots, V_{m} are simultaneously invariant for both (1) and (2) iff $B(\omega)-A(\omega)$ commutes with every $P_{i}(\omega), i=1, \ldots, m$, for all $\omega \in \Omega$. (b) The last statement does not prevent one or both of the systems (1) and (2) from also having "finest" decompositions $V_{i}=V_{i}^{(1)} \oplus \cdots \oplus V_{i}^{\left(m_{i}\right)}$ which need not be common to (1) and (2).

References

[^1]
[^0]: Received by the editors November 30, 1981.
 1980 Mathematics Subject Classification. Primary 34C35, 54H20, 58F10; Secondary 34K20.
 Key words and phrases. Almost periodic, ordinary differential equations, projector, skew-product flow, subbundle, Whitney sum.
 ${ }^{1}$ This research was supported by NSF grant MCS 8115323.

[^1]: 1. R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358.

 Department of Mathematical Sciences, North Dakota State University, Fargo, North Dakota 58105

