A REMARK ON LINEAR DIFFERENTIAL SYSTEMS WITH THE SAME INVARIANT SUBBUNDLES

ROBERT E. VINOGRAD¹

ABSTRACT. Given a flow $\sigma(\omega, t) = \omega \cdot t$ on a compact metric space Ω and a continuous $n \times n$ -matrix $A(\omega)$, the family of ODE systems $\dot{x} = A(\omega \cdot t)x$ defines a linear skew-product flow on $W = \Omega \times X$, $X = R^n$ or C^n . Let $W = U \oplus V$ be a Whitney sum and $P: W \to W$ be the correspondent projector. Result: the subbundles U and V are invariant for the flows induced by $A(\omega)$ and $B(\omega)$ iff $A(\omega) - B(\omega)$ commutes with $P(\omega)$ for all $\omega \in \Omega$.

As is known (e.g. see [1]), given a flow $\sigma(\omega, t) = \omega \cdot t$ on a space Ω (usually compact metric) and an $n \times n$ -matrix $A(\omega)$ which is continuous on Ω , the family of systems

(1)
$$\dot{x} = A(\omega \cdot t)x, \qquad \dot{x} = \frac{d}{dt}, x \in X = R^n \text{ or } C^n,$$

naturally defines a flow (so-called LSPF [1]) on the product space $W = \Omega \times X$. Let $W = U \oplus V$ be a Whitney sum subbundle decomposition and X_{ω} , U_{ω} , V_{ω} be corresponding fibers so that $X_{\omega} = U_{\omega} \oplus V_{\omega}$. Then there is an uniquely determined projector $P: W \to W$ with range P = U and null P = V (i.e. $P(\omega) = P|X_{\omega}$ is a continuous projection $X_{\omega} \to X_{\omega}$ with range $P(\omega) = U_{\omega}$, null $P(\omega) = V_{\omega}$, so that $P(\omega)u = u$, $P(\omega)v = 0$ for $u \in U_{\omega}$, $v \in V_{\omega}$).

The subbundles U, V are said to be invariant for (1) if every solution of (1) starting in U or V remains in it for all t. If this is the case, we shall say for brevity that P is invariant for (1).

The purpose of the present paper is to establish the following surprisingly simple result.

THEOREM. P is invariant simultaneously for two systems (1) and

if and only if $B(\omega) - A(\omega)$ commutes with $P(\omega)$ for all $\omega \in \Omega$.

LEMMA. (i) P is invariant for (1) iff $\tilde{x}(t) = P(\omega \cdot t)x(t)$ is a solution to (1) whenever x(t) is. (ii) If P is invariant for (1), then $\dot{P}(\omega \cdot t)$ exists and (suppressing $\omega \cdot t$)

(3)
$$\dot{P} = AP - PA \quad for \ all \ \omega \ and \ t.$$

(iii) If $P(\omega)$ is a continuous projection on Ω such that $\dot{P}(\omega \cdot t)$ exists and satisfies (3), then P is invariant for (1).

Received by the editors November 30, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34C35, 54H20, 58F10; Secondary 34K20.

Key words and phrases. Almost periodic, ordinary differential equations, projector, skew-product flow, subbundle, Whitney sum.

¹This research was supported by NSF grant MCS 8115323.

^{© 1982} American Mathematical Society 0002-9939/81/0000-0786/\$01.25

R. E. VINOGRAD

PROOF. In what follows we denote by $\xi(t)$ a solution with $\xi(0) = \xi$.

(i) \rightarrow Pick $u \in U_{\omega}$, $v \in V_{\omega}$ and consider the solutions u(t), v(t). By assumption, $\tilde{u}(t) = P(\omega \cdot t)u(t)$, $\tilde{v}(t) = P(\omega \cdot t)v(t)$ are also solutions, and we have $\tilde{u}(0) = P(\omega)u = u$, $\tilde{v}(0) = P(\omega)v = 0$. By uniqueness, $\tilde{u}(t) \equiv u(t)$, $\tilde{v}(t) \equiv 0$ which means $u(t) \in U_{\omega \cdot t}$, $v(t) \in V_{\omega \cdot t}$.

 $\leftarrow \text{ Pick any solution } x(t), \ x(0) = x \in X_{\omega}; \text{ then } x = u + v, \ u \in U_{\omega}, \ v \in V_{\omega}. \text{ Since } U, V \text{ are invariant, we have } u(t) \in U_{\omega \cdot t}, \ v(t) \in V_{\omega \cdot t}. \text{ Also } x(t) = u(t) + v(t), \text{ and so } P(\omega \cdot t)x(t) = u(t), \text{ a solution to } (1).$

(ii) Fix an arbitrary $\omega \in \Omega$ and a basis x_1, \ldots, x_n in X_{ω} . Let X(t) be a fundamental matrix of (1) with vector-columns $x_1(t), \ldots, x_n(t)$. By (i), the invariancy of P implies that $\tilde{X}(t) = P(\omega \cdot t)X(t)$ is again a fundamental matrix of (1). Hence (suppressing t and $\omega \cdot t$) $P = \tilde{X}X^{-1}$ is differentiable and

$$\dot{P} = \tilde{X}X^{-1} + \tilde{X}(X^{-1})^{\cdot} = A\tilde{X}X^{-1} - \tilde{X}X^{-1}A = AP - PA.$$

(iii) Let (3) be given and x(t) satisfy (1). Then

$$(Px)^{\cdot} = \dot{P}x + P\dot{x} = (AP - PA)x + PAx = APx,$$

i.e. $\tilde{x} = Px$ is a solution to (1). Now (i) implies (iii).

PROOF OF THEOREM. Let (B-A)P = P(B-A) and P be invariant for (1). Then by (ii)

$$\dot{P} = AP - PA = AP - PA + [(B - A)P - P(B - A)] = BP - PB,$$

and hence by (iii) P is invariant for (2). Conversely, if P is invariant for both (1) and (2), then by (ii) $AP - PA = \dot{P} = BP - PB$ and so (B - A)P = P(B - A).

REMARKS. (a) An obvious generalization for a Whitney sum with m > 2addends, i.e., $W = V_1 \oplus \cdots \oplus V_m$ with projectors P_i where range $P_i = V_i$, null $P_i = \bigoplus_{k \neq i} V_k$, says: V_1, \ldots, V_m are simultaneously invariant for both (1) and (2) iff $B(\omega) - A(\omega)$ commutes with every $P_i(\omega)$, $i = 1, \ldots, m$, for all $\omega \in \Omega$. (b) The last statement does not prevent one or both of the systems (1) and (2) from also having "finest" decompositions $V_i = V_i^{(1)} \oplus \cdots \oplus V_i^{(m_i)}$ which need not be common to (1) and (2).

References

1. R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358.

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTH DAKOTA STATE UNIVERSITY, FARGO, NORTH DAKOTA 58105