SOME CHARACTERIZATIONS OF WEAK RADON-NIKODYM SETS

ELIAS SAAB^l

ABSTRACT. Let K be a weak*-compact convex subset of the dual E^* of a Banach space E. It is shown that K has the weak Radon-Nikodym property if and only if every x^{**} in E^{**} restricted to K is universally measurable if and only if every x^{**} in E^{**} restricted to any weak*-compact subset M of K has a point of continuity on (M, weak*) if and only if K is a set of complete continuity if and only if every subset of K is weak* dentable in $(M, \sigma(E^*, E^{**}))$.

A subset of K of a Banach space E is said to have the weak Radon-Nikodym property (resp., a set of complete continuity) if for every finite measure space (Ω, Σ, μ) and bounded operator $T: L^1(\Omega, \Sigma, \mu) \to E$ satisfying $T(1_A/\mu(A)) \in K$ for every $A \in \Sigma$ with $\mu(A) \neq 0$ is represented by a Pettis kernel with values in K (resp. is a Dunford-Pettis operator).

If Ω is a compact Hausdorff space, then a real valued function defined on Ω is universally measurable if ϕ is μ -measurable for every Radon probability measure on Ω .

The set of all Radon probability measures on Ω will be denoted by $M_{+}^{1}(\Omega)$.

If K is a weak*-compact convex subset of the dual E^* of a Banach space E, we say that a universally measurable affine function f on $(K, \sigma(E^*, E))$ satisfies the barycentric formula if for any λ in $M^1_+(K, \sigma(E^*, E))$ we have

$$f\left(w^* - \int_K x^* d\lambda\right) = \int_K f(x^*) d\lambda,$$

where $w^* - \int_K x^* d\lambda$ is the barycenter of λ .

In this paper we are going to give a characterization of weak*-compact convex sets K that have the weak Radon-Nikodym property. Namely, we will show that such a set has the weak Radon-Nikodym property if and only if K is a set of complete continuity if and only if every x^{**} in E^{**} is universally measurable on (K, weak*) if and only if every x^{**} in E^{**} restricted to any weak*-compact subset M in K has a point of continuity.

In the case where $K = B_{E^*}$, the unit ball of E^* , the above characterizations were given by Pelczynski [9], Hagler [5], Haydon [6], Janicka [7], Odell and Rosenthal [8] and Saab and Saab [12 and 13].

Received by the editors December 14, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46G10, 46B22.

Key words and phrases. (Weak) Radon-Nikodym, sets of complete continuity.

¹Supported by a summer research fellowship grant from the University of Missouri.

308 ELIAS SAAB

In the case where K is any absolutely convex weak*-compact subset, the above characterizations were given by Riddle, E. Saab and Uhl [10].

Our results yield a positive solution of a problem raised in [10, Problem 1]. Namely, every $x^{**} \in E^{**}$ restricted to every weak*-compact subset of K has a point of continuity on (M, weak*) whenever K has the weak Radon-Nikodym property.

Another consequence is that a weak*-compact subset M of a weak Radon-Nikodym set K is a weak Radon-Nikodym set, and if S is any linear operator from any Banach space F to E then $S^*(K)$ is a weak Radon-Nikodym set. We will also show that a weak*-compact convex set has the weak Radon-Nikodym property if and only if every bounded set in K is weak*-dentable in $(E^*, \sigma(E^*, E^{**}))$.

We would like to thank N. Kalton for showing us how to split the operator T in the proof of the next theorem, using a Lindenstrauss compactness argument.

THEOREM 1. Let K be a w^* -compact convex subset of the dual E^* of a Banach space E. The following statements are equivalent:

- (i) Every bounded sequence $(x_n)_{n>1}$ in E has a subsequence $(x_{n_p})_{p>1}$ such that for every $x^* \in K$, $\lim_{n} x^*(x_{n_n})$ exists.
 - (ii) The restriction of every $x^{**} \in E^{**}$ to $(K, \sigma(E^*, E))$ is universally measurable.
- (iii) The restriction of every $x^{**} \in E^{**}$ to $(K, \sigma(E^*, E))$ is universally measurable and satisfies the barycentric formula.
- (iv) For every w^* -compact subset M in K, the restriction of every $x^{**} \in E^{**}$ to $(M, \sigma(E^*, E))$ has a point of continuity.
 - (v) The set K has the weak Radon-Nikodym property.
- PROOF. (i) \Rightarrow (ii). Let x^{**} in E^{**} , choose $(x_{\alpha})_{\alpha \in I}$ a net E such that $\|x_{\alpha}\| \leq \|x^{**}\|$ and $(x_{\alpha})_{\alpha \in I}$ converging weak* to x^{**} . Let $A = \{x_{\alpha} \mid K; \ \alpha \in I\} \subseteq C(K)$, where C(K) is the space of continuous functions on $(K, \sigma(E^*, E))$. (i) and Theorem 2F of [3] imply the existence of a universally measurable function g on $(K, \sigma(E^*, E))$ and a subnet (x_{β}) of (x_{α}) such that $g(x^*) = \lim_{\beta} x^*(x_{\beta})$ for every x^* in K. But this implies that x^{**} restricted to K is equal to g. Hence, x^{**} restricted to $(K, \sigma(E^*, E))$ is universally measurable.
- (ii) \Rightarrow (i). Fix $\lambda \in M_+^1(K)$, and let $(x_n)_{n>1}$ be a bounded sequence in E. Consider $(x_n)_{n>1}$ as continuous functions on K. Every subsequence $(x_{n_p})_{p>1}$ of $(x_n)_{n>1}$ has a λ -measurable cluster point namely any x^{**} restricted to K that is a cluster point of (x_{n_p}) in $(E^{**}, \sigma(E^{**}, E^*))$. Apply Theorem 2F of [3] to deduce that (x_n) must have a subsequence (x_{n_n}) such that $\lim_p x^*(x_{n_n})$ exists for every x^* in K.
- (i) \Rightarrow (iv). Let x^{**} in E^{**} and choose a net $(x_{\alpha})_{\alpha \in I}$ in E such that $x^{**} = w^*$ - $\lim_{\alpha} x_{\alpha}$ and $||x_{\alpha}|| \leq ||x^{**}||$. Let $A = \{x_{\alpha}|_K; \alpha \in I\}$. If there exists a w^* -compact subset M of K such that x^{**} restricted to $(M, \sigma(E^*, E))$ does not have any point of continuity, then by [8] there exists a sequence $(x_n)_{n \geq 1}$ in E such $f_n = x_n|_K$ belongs to A and $(f_n)_{n \geq 1}$ is equivalent to the usual I_1 -basis in C(K), but this contradicts (i).
- (iv) \Rightarrow (i). Fix $(x_n)_{n\geq 1}$ a bounded sequence in E. (iv) and [10] imply that any x^{**} restricted to any w^* -compact subset M of K-K has a point of continuity on $(M, \sigma(E^*, E))$. Without loss of generality we can assume that $0 \in K$. Put H = K K and let $T: E \to C(H)$ be defined by $Tx = x|_H$. It is easy to see that $T^*(B_{F^*}) = H$.

Hence T factors through a Banach space not containing l_1 [12] and therefore $\{T(x_n); n \ge 1\}$ is weakly precompact by [10]. This means that there is a subsequence (x_{n_p}) such that $Tx_{n_p} = x_{n_p|K}$ converges pointwise on K, that is $\lim_p x^*(x_{n_p})$ exists for every $x^* \in K$.

(i) \Rightarrow (iii). Let $x^{**} \in E^{**}$, x^{**} is universally measurable as a function on K and its restriction to any subcompact M of K has a point of continuity so x^{**} satisfies the barycentric formula by a theorem of Choquet (see [1]).

(iii)
$$\Rightarrow$$
 (v) is [7].

To complete the proof we need to show that $(v) \Rightarrow (iv)$. By [10] it is enough to show that K - K has the weak Radon-Nikodym property. Let $T: L^1[0, 1] \to E^*$ such that $T(1_A/\lambda(A)) \in K - K$ for every measurable set A such that $\lambda(A) > 0$. For every $n \ge 0$, let A_n be the algebra generated by the nth diadic partition of [0, 1], $\{I_n^1, I_n^2, \ldots, I_n^{2^n}\}$. For every $1 \le j \le 2^n$ we have that

$$T\left(\frac{1_{I_n^j}}{\lambda(I_n^j)}\right) = U_n\left(\frac{1_{I_n^j}}{\lambda(I_n^j)}\right) - V_n\left(\frac{1_{I_n^j}}{\lambda(I_n^j)}\right).$$

(Pick any choice.)

This enables us to define two linear operators

$$U_n: L_1(A_n) \to X^*$$

and

$$V_n: L_1(A_n) \to X^*$$

such that $T=U_n-V_n$ on $L_1(A_n)$, $U_n(1_A/\lambda(A))\in K$ and $V_n(1_A/\lambda(A))\in K$ for every $A\in A_n$ and $\lambda(A)\neq 0$. Let $\alpha=\sup_{x^*\in K}\|x^*\|$, then $\|U_n\|\leq \alpha$ and $\|V_n\|\leq \alpha$. Let $H=\bigcup_{n=0}^\infty L_1(A_n)$. By a Lindenstrauss compactness argument one can find two bounded linear operators $\tilde{U},\,\tilde{V}\colon H\to X^*$ such that $T=\tilde{U}-\tilde{V}$ on $H,\,\tilde{U}(1_A/\lambda(A))\in K$ and $\tilde{V}(1_A/\lambda(A))\in K$ for any $A\in\bigcup_{n=1}^\infty A_n$ and $\lambda(A)\neq 0$. Let U and V denote the unique extensions of \tilde{U} and \tilde{V} respectively to $L^1[0,1]$. It is clear that $T=U-V,\,U(1_A/\lambda(A))\in K$ and $V(1_A/\lambda(A))\in K$ for every measurable set A such that $\lambda(A)\neq 0$. Let U and U be two Pettis integrable functions,

$$g_1: [0,1] \to K, \qquad g_2: [0,1] \to K,$$

such that

$$U(f) = \text{Pettis-} \int_0^1 f g_1 d\lambda$$

and

$$V(f) = \text{Pettis-} \int_0^1 f g_2 \, d\lambda$$

for every $f \in L^1[0, 1]$. Hence

$$T(f) = \text{Pettis-} \int_0^1 f(g_1 - g_2) d\lambda \text{ for every } f \in L^1[0, 1].$$

310 ELIAS SAAB

This shows that K - K has the weak Radon-Nikodym property for the unit interval. Therefore K - K is a set of complete continuity by [10] and hence, K - K has the weak Radon-Nikodym property [10].

A set K that satisfies (iv) is said to have the scalar point of continuity.

COROLLARY 2. Let K be a w^* -compact convex subset of the dual E^* of a Banach space E. If K has the WRNP then:

- (i) any w*-compact convex subset M of K has the weak Radon-Nikodym property;
- (ii) for any bounded linear operator T from a Banach space F to E, $T^*(K)$ has the weak Radon-Nikodym property in F^* .

PROOF. (i) For every x^{**} in E^{**} , x^{**} restricted to M is universally measurable.

(ii) Let $y^{**} \in F^{**}$ and $\lambda \in M^1_+(T^*(K))$. Choose $\mu \in M^1_+(K)$ such that $\lambda = T^*(\mu)$ [2], the linear functional $y^{**}T^* \in E^{**}$. Hence, its restriction to K is μ -measurable. Therefore $y^{**}_{|T^*(K)}$ is $\lambda = T^*(\mu)$ measurable [2]. Consequently, y^{**} is universally measurable as a function on $T^*(K)$.

COROLLARY 3. For any weak*-compact convex subset K of the dual E^* of a Banach space E, the following statements are equivalent:

- (i) The set K has the weak Radon-Nikodym property.
- (ii) The set K has the weak Radon-Nikodym property for the unit interval.
- (iii) The set K is a set of complete continuity.

PROOF. (ii) \Rightarrow (iii). Suppose that $0 \in K$. (ii) and the proof of Theorem 1 imply that K - K is a set of complete continuity. Hence, K = K is a set of complete continuity.

(iii) \Rightarrow (i). (iii) and the proof of Theorem 1 imply that K - K is a set of complete continuity, therefore K - K has the weak Radon-Nikodym property [10] and hence, $K \subset K - K$ has the weak Radon-Nikodym property by Corollary 2.

In the definition of a weak Radon-Nikodym set K we required the Pettis kernel of the operator T to have values in K; the following corollary relieves us from this restriction.

COROLLARY 4. A w*-compact convex subset K of the dual E* of a Banach space E has the weak Radon-Nikodym property if and only if every bounded linear operator T: $L^1[0,1] \to E^*$ such that $T(1_A/\lambda(A)) \in K$ is Pettis-differentiable.

PROOF. One implication is obvious. If every operator $T: L^1[0,1] \to E^*$ such that $T(1_A/\lambda(A)) \in K$ is Pettis-differentiable, then K is a set of complete continuity and hence, K has the weak Radon-Nikodym property by Corollary 3.

COROLLARY 5. If K has the weak Radon-Nikodym property then every w^* -compact convex subset M of K is the norm-closed convex hull of its extreme points.

PROOF. Suppose that $0 \in K$. The set K - K has the weak Radon-Nikodym property by Theorem 1. Apply [11] to conclude that every w^* -compact convex subset M of K - K (and in particular in K) is the norm-closed convex hull of its extreme points.

Recall [12] that a bounded subset M of the dual E^* is weak*-dentable in $(E^*, \sigma(E^*, E^{**}))$, if for every zero neighborhood V in $(E^*, \sigma(E^*, E^{**}))$ there is a weak*-open slice S of M such that $S - S \subset V$ where S is

$$S = \left\{ x^* \in M; \, x^*(x_0) > \sup_{x^* \in M} x^*(x_0) - \alpha \right\}$$

for $x_0 \in E$ and $\alpha > 0$.

The following was shown in [12] about a weak*-compact convex subset K of the dual E^* of a Banach space E: every subset M of K is a weak*-dentable in $(E^*, \sigma(E^*, E^{**}))$ if and only if every x^{**} in E^{**} restricted to any weak*-compact subset M of K has a point of continuity on (M, weak*).

Combining the result of [12] and Theorem 1 we get

COROLLARY 6. A weak*-compact convex subset K of the dual E^* of a Banach space E has the weak Radon-Nikodym property if and only if every subset M of K is weak*-dentable in $(E^*, \sigma(E^*, E^{**}))$.

We finish by asking: Is the converse of Corollary 5 true? The answer is yes if K is absolutely convex [11].

REFERENCES

- 1. E. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
- 2. A. Badrikian, Séminaire sur les fonctions aléatoires et les mesures cylindriques, Lecture Notes in Math., vol. 139, Springer-Verlag, Berlin and New York, 1970.
- 3. J. Bourgain, D. H. Fremlin and M. Talagrand, *Pointwise compact sets of Baire-measurable functions*, Amer. J. Math. 100 (1978), 845-886.
- 4. D. H. Fremlin, Pointwise compact sets of measurable functions, Manuscripta Math. 15 (1975), 219-242.
 - 5. J. Hagler, Some more Banach spaces which contain l_1 , Studia Math. 46 (1973), 35-42.
- 6. R. Haydon, Some more characterizations of Banach spaces containing l_1 , Math. Proc. Cambridge Philos. Soc. 80 (1976), 269-276.
- 7. L. Janicka, Some measure-theoretical characterizations of Banach spaces not containing l_1 , Bull. Acad. Polon. Sci. Sci. Sci. Math. 27 (1979), 561-565.
- 8. E. Odell and H. P. Rosenthal, A double dual characterization of separable Banach spaces containing l_1 , Israel J. Math. 20 (1975), 375–384.
 - 9. A. Pelczynski, On Banach spaces containing $L^1(\mu)$, Studia Math. 30 (1968), 231–246.
- 10. L. Riddle, E. Saab and J. J. Uhl, Jr., Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. (to appear).
- 11. L. Riddle, Geometry of sets with the weak Radon-Nikodym property, Proc. Amer. Math. Soc. (to appear).
- 12. E. Saab and P. Saab, A dual geometric characterization of Banach spaces not containing l_1 , Pacific J. Math. (to appear).
- 13. _____, Sur les espaces de Banach qui ne contiennent pas l_1 , C. R. Acad. Sci. Paris. 293 (1981), 261-263.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211