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CONFORMALLY FLAT SPACES AND

A PINCHING PROBLEM

ON THE RICCI TENSOR

TH. HASANIS

Abstract. Recent results of S. I. Goldberg on conformally flat manifolds and

hypersurfaces of Euclidean space are extended.

1. Introduction. By applying S.-T. Yau's "maximum principle", S. Goldberg [3]

proved that an «-dimensional, n ^ 3, conformally flat Riemannian manifold with

constant scalar curvature R whose Ricci curvature is bounded below, and for which

suptraceg2 < Ä2/(« — 1), is a space form. A corresponding result for hyper-

surfaces in Euchdean space was obtained by analogy.

The author sincerely thanks Professor S. Goldberg for valuable suggestions.

2. Preliminaries. Let (M, g) be a Riemannian manifold with metric g. The

curvature transformation R(X, Y), X,Y G TM, where T M is the tangent space at

p G M, and g are related by

R(X,Y) = V^yj-iV^Vv],

where v^ is the operation of covariant differentiation with respect to X. In terms of

a basis Xx,..., Xn of T M we set

Rijkl = g(R(X„ Xj)Xk, X,),       Rtj = traced - R(X„ Xk)Xj).

We denote the scalar curvature by R, that is, R = trace Q, where Q is the symmetric

linear transformation field defined by the Ricci tensor, that is Q-(R'j) and

R'j = g'kRjk. The manifold (M, g) is conformally flat if g is conformally related to a

locally flat metric. Let M be an «-dimensional (« > 3) conformally flat Riemannian

manifold with constant scalar curvature, then the following formula may be found in

[3]:       ,

-Atrace Q2 = —^r trace Q3 - -,--^-zrR trace g2
I n — L (n — 1)(« — 2)

R?

(«- l)(«-2)

Put S = Q — R¡/n, I = identity. Then trace S2 > 0 with equality holding if and

only if M is an Einstein space. Obviously trace S2 = trace Q2 — R2/n, and since R
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is constant we get A trace S2 = A trace Q2, where A is the Laplace operator on M.

Repeating the same calculations as in [3] we get, for/2 = trace S2,

2 » n     1      \ Jntn _ ,)

The tool for the proof of the main result is a slight modification [5, Theorem 1] of

the generalized maximum principle proved in [1 or 8], which we state as follows: Let

M be a complete, connected Riemannian manifold with Ricci curvature bounded

from below. Let / be a C2-function bounded from above on M and which has no

maximum. Then for all e > 0, there exists a point P G M such that at P,

(1) sup/-e </(/>)< sup/-e/2,

(2)|grad/|(P)<e,

(3) A/(P) < e.

3. Main results. The following lemma is fundamental and may be found in [6].

Lemma. Let ax,...,anbe real numbers satisfying the inequality

MiMkl
Then for any pair of distinct i andj = \,...,n we have ataj > 0.

Theorem 1. Let M be an n-dimensional (« > 3), complete, connected conformally

flat Riemannian manifold. If its scalar curvature R is a positive constant and

trace Q2 < R2/(n — 1), then M is a space form or trace Q2 — R2/(n — 1) everywhere

on M.

Proof. Let/2 be as in §2 above; we distinguish two cases.

Case I./2 attains its maximum; then by using E. Hopfs well-known theorem we

conclude from (2.1) that f2 — constant and thus /2 = 0 or/2 = R2/n(n — 1)

everywhere on M. But then trace Q2 = R2/n, that is, M is an Einstein space and

thus a space form or trace Q2 — R2/(n — 1) everywhere on M.

Case II. f2 has no maximum. Suppose sup/2 < R2/n(n — 1); then from (2.1) and

by using the same method as in the proof of [4, Theorem A] we conclude that

f2 = 0, that is, M is a space form. Now let sup/2 = R2/n(n — 1). Since/2 attains

no maximum we also have f2 < R2/n(n — 1). We prove that this is not true.

Obviously, since f2 < R2/n(n — 1), we get trace Q2 < R2/(n — 1). Applying the

lemma for the eigenvalues of the Ricci tensor we conclude that the Ricci curvature is

bounded from below; in particular, it is positive. By generalized maximum principle

we have that, for any natural number m, there exists a point Pm G M such that

(sincesup/2 = R2/(n(n - 1)))

<3» A-¿</2(0<A-¿'
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From (3.1) we get

or

-S(PJ>
Mn-l) 2m(R/Mn - I) + f(Pm))

and thus (3.2) becomes

^^/2(p )-!-<-L
"-1 "      2m(R/{nTn~^)+f(Pm))      2m

or

^''^whf*™K«-i)
or

(3-3) f2(Pm) - J^ ÂPJ - * <0.

From (3.3), since f(Pm) > 0, we get

h - 1 + 4R + Jn - 1
f(Pj<---^-

2/n

and thus

]¡n - 1 + 4R + fn - 1
sup/ s;

2i/«

Now, sup/ = Ä/ v«(« — 1) and, comparing with the last inequality, we take

R /« - 1 + 4R + Jn- 1

]/n(n - 1) 2vn"

or

2Ä - (« - 1) < \/(«- l)2 + 4fl(«- 1)

or

(3.4) R<2(n-\).

Now let X be a positive constant, then the Riemannian manifold (M,Xg) has scalar

curvature R = R/X and satisfies the same assumptions as (M, g). Then we must

have, as above,

R = R/X*z2(n-\)    or   R < 2X(« - 1),

which is impossible for X < R/2(n — 1). This completes the proof of the theorem.
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Corollary 1. Let M be an n-dimensional (« ^ 3), complete, connected conformally

flat Riemannian manifold. If its scalar curvature R is a positive constant and

trace Q2 < R2/(n — 1), then M is a space form.

Remark. If on a conformally flat Riemannian manifold with positive constant

scalar curvature R, trace Q2 = R2/(n — 1) everywhere, then it follows easily [2,

Theorem 3] that M is a Riemannian product of a space form Mx, with a 1-dimen-

sional Riemannian manifold N, i.e., M = Mx X N.

Thus we have

Theorem 1'. The only n-dimensional (« s* 3), complete, connected conformally flat

Riemannian manifolds with positive constant scalar curvature such that trace Q2 <

R2/(n — 1), are the space forms and the Riemannian products Mx X N where Mx is a

space form and N is 1 -dimensional.

In a similar manner, we obtain the following extension of a theorem of Okumura

[7].

Theorem 2. Let M be an n-dimensional (« > 3), complete, connected hypersurface

of Euclidean space E"+K If the mean curvature H is constant and S *s n2H2/(n — 1),

where S is the square of the second fundamental form, then M is a hyperplane, a

hypersphere or a circular cylinder S"~l X E.

Corollary 2. Let M be an n-dimensional (« > 3), complete, connected hyper-

surface ofE"+]. If the mean curvature is constant and S < n2H2/(n — 1), then M is a

hypersphere.
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