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MINIMAL ENTROPY FOR ENDOMORPfflSMS OF THE CIRCLE

RYUICHIITO

ABSTRACT. Let / be an endomorphism (continuous map) of the circle which

has two periodic points of period m and n respectively such that m > 2, n > 2

and (m,n) = 1, then topological entropy h(f) > log/¿m?n where p.m,n. is the

largest zero of the polynomial im+n — xm — xn — 1.

Introduction. In [3], L. Block, J. Guckenheimer, M. Misiurewicz and L. S.

Young gave, among other things, minimal topological entropy for several types

of endomorphisms (continuous maps) of the circle which have a fixed point and

another periodic point. Main results in [3] will be shown later as Lemmas 2.1 and

2.4 without proof. L. Block, E. M. Coven and Z. Nitecki [2] have given some

improved estimates of minimal entropy after [3]. The aim of this paper is to prove

the following.

THEOREM B. Let f be an endomorphism of the circle which has two periodic

points of period m and n respectively such that m > 2, n > 2 and (m, n) = 1. Then

topological entropy h(f) > log/zmjTl where pm,n is the largest zero of xm+n — xm —

xn-l.

Notice that / has no condition on degree. We also give an example of endomor-

phism which attains the smallest possible entropy logp,m;n.

Let R denote the real numbers, Z the integers, N the positive integers, and S =

R/Z the circle. Let 7r: R —► S denote the canonical projection. For simplicity, we

will often write x instead of 7r(x) for 0 < x < 1. Let /: S —* S be an endomorphism

of degree k. Choose a lifting F: R —► R, that is a map such that irF = fix.

Liftings exist and are unique up to the addition of an integer. Each lifting satisfies

F(x +1) = F(x) + fc.
DEFINITION. Let / be an endomorphism of degree 1 and F be a lifting of /.

We define the rotation number

p(F, x) = lim sup -(Fn(x) - x)
n—>oo   71

and the rotation set

p(F) = {p(F,x):xER} = {p(F,x):xE [0,1)}.

Notice that if a different lifting is used, then this simply has the effect of

translating the rotation number and set by an integer.

It is known (see [4 or 6]) that p(F) is a single point or a closed interval, and if

p/m G p(F) and (p, m) = 1 then / has a periodic point a of period m with p(F, a) =
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p/m. Conversely if / has a periodic point of period m then there islEZ such that

l/m £ p(F). Moreover it is easy to see that if F is monotone then p(F) is a single

point.

We remark here that in [1] C. Bernhardt gave relations among rotation set,

topological entropy and, so-called, twist number for the set of endomorphisms of

degree 1 having one maximum and one minimum, to which the one attaining the

smallest entropy in the example belongs.

1. Let / be an endomorphism of S of degree 1. By an orbit of periodic points

of / of period m, we mean a set {a0,...,am-i} = {/I(°o): z = 0,..., m — 1} such

that fm(ao) = ao and 0 < Oo < ai < ■■■ < am-i < 1 in 5. We define ak = ai + u in

R if a¿ is in the orbit of period m, k = mu + i, k, u, iE Z and 0 < i < m — 1, and

use this notation throughout this paper.

LEMMA 1.1. Let f have an orbit {ao, ...,am-i} of periodic points of period

m > 2 and have no periodic points of period less than m. Then o^ < o¡ implies

F(afc) < F(ai) where a^ and o¡ are defined as above for k and I E Z.

PROOF. By definition a¡t < a¡ if k < I. Suppose F(as) > F(at) for as < at, then

there exists j such that F(aj-i) < F(a¿) and F(aj) > F(aj+i). Let Ik = [afc,afc+i]>

k £ Z, be intervals on R. As F(aj-i) / F(aj+i), there exists two adjacent intervals,

say /¡_i and /¡, such that F(/,_1)nF(/7) D /; and either F(Ij-i) D /¡_i or F(Ij) D

/¡_i. Since we have only m different intervals /0,... ,/m-i on S, a sequence £, —►

h2 ~* ■m ■ —► Iim-! of m — 1 intervals on S such that f(ha) D /iQ+1 and Itl = n(Ii),

either includes one of 7r(/j_i) and tx(Ij) or has some interval, say Ir, twice. The

first case gives the sequence 7r(/¡) —>•••—► 7r(/,_i) or tx(Ij) —> 7r(/¡) so that we have

/CT(7r(/¡)) D 7r(/¡) for some o < m — 1. The second case implies fT(Ir) D Ir for some

T < m — 2. Therefore we have a periodic point of period less than m in each case,

contradicting the hypothesis.

Let Am = {ao, ■■■, am_i} and Bn = {be,,..., 6n_i} be two orbits of periodic points

of / of period m and n respectively. Assume p(F,ai) ^ p(F,bj) for a lifting F of

/. Let F : R —y R be a mapping such that the graph of F is made of line segments

connecting (c,F(c)) and (d,F(d)) where c and d are adjacent points among the set

{afc : k E Z} U {bi : I E Z} in R. Let / be the endomorphism of S, of which F is a

lifting. In fact / is 7r.F|[0,1] and of degree 1. We call F and / (m,n)-skeletons of

F and / respectively with respect to Am and Bn. By the manner of constructing

/ from /, we have h(f) < h(f) (see [5]).
DEFINITION, (m, n)-skeletons F and / with respect to Am and Bn are called

simple if F keeps the order among {ah : k£ Z}, and if

(1) p(F, ai) > p(F, bj) and F does not have a local maximum at any bj, or

(2) p(F, ai) < p(F, bj) and F does not have a local minimum at any bj.

Hereafter we often assume the following hypothesis for / and say / satisfies

tlm,n-

(Hm,n)- (I) / is an endomorphism of S of degree 1.

(H)  / has two orbits of periodic points Am  =  {ao,---,a>m-i}  and

Bn = {bo, ■ ■ ■,bn-i} such that p(F,a0) ¥= p(F, bo) for a lifting F of /.

The next lemma will be used only in the proof of Lemma 1.3.

Lemma 1.2. Let F and G be liftings of endomorphisms f and g of degree 1

respectively.  Assume that for any x E R there exists y E R such that y > x and
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F(x) > G(y).  Then p~(F) > p~(G) where p~(F) denotes the largest lower bound of

the rotation set p(F).

PROOF. First we prove by induction on n that for any x E R there exists yn

such that yn > x and Fn(x) > Gn(yn). For n = 1, this is just the assumption

of the lemma. Assume that it is true for n. Then there exists u E R such that

u > F(x) and Fn+1(x) = Fn(F(x)) > Gn(u). Since there is yx such that yi > x

and F(x) > G(yi), and G(x + p) = G(x) + p for p E Z, we have yn+i E R such that

2/n+i > Vi and G(yn+i) = u. This yn+i satisfies yn+i > x and Fn+1(x) > Gn(u) =

Gn(G(yn+i)) = Gn+1(yn+i), completing the induction.

To prove p~(F) > p~(G), it suffices to show p~(G) < k/n for any rational number

k/n > p~(F). Assume p~(F) < k/n. Then we have either a E [0,1] such that

Fn(a) = a + k or Fn(x) < x + k for any ie[0,l]. In the first case we have b E R

such that b > a and Gn(b) < Fn(a) = a+k < b+k. In the second case we have c such

that c > 1 and Gn(c) < Fn(l) <l + k<c+k. Since Gn(x+p) = Gn(x)+p for p 6 Z,

in both cases, we have either y £ [0,1] such that Gn(y) = y + k or Gn(x) < x + k for

any x. Therefore we have p~(G) < k/n, completing the proof.

LEMMA 1.3. Let f satisfy Hm¡n where 1 < m < n and have no periodic points

of period less than m. Then there exists a piecewise linear endomorphism g of S of

degree 1 satisfying the following.

(1) g satisfies Hm>n, for some n such that 1 < n < n,

(2) g is a simple (m,n')-skeleton of itself,

(3) g has no fixed point,

(4) h(g) < h(f).

PROOF. We may assume p(F, a0) > p(F, b0), because the case p(F, ao) < p(F, bo)

goes similarly. If /, skeleton of /, is simple then we have nothing to prove. Let / be

not simple. Since F preserves the order among {ofe : k E Z} by Lemma 1.1, F has a

local maximum at some bj. Take, say cs and ct from the set {a¡t : k £ Z} U {b¡ : I £

Z} such that cs < bj < ct and no element of {o^ : k £ Z} U {bi : I E Z} is in (cs,ct)

except bj. We modify the graph of F on [cs,Ct] into the line segment connecting

(cs,F(cs)) and (ct,F(ct)). By doing similar modification on all the intervals of type

[cs + u,ct + u), u E Z, we have a mapping Fi : R —► R whose graph is constructed

by these modifications from the graph of F. If F\ still has a local maximum at

some bj', then we do similar modifications around bj' + u, uE Z, as above. Since

{bo,...,bn-i} is a finite set, eventually we have a mapping F' which does not have

a local maximum at any point of {bi : l£ Z}. Let /' = 7rF"| [0,1), then F' is a lifting

of /' and /' still has the orbit {ao,...,am_i}. Since F(x) > F'(x), we have p~(F) >

p-(F') by Lemma 1.2. Thus we have p(F') D [p-(F),p(F,a0)} D [p(F,b0),p(F,ao)}.

Therefore we have an orbit of periodic points of /', {b'0,...,b'n,} such that n <

n and p(F',b'0) < p(F',a0). Let /' and F" be the (m, n')-skeletons of /' and F"

respectively with respect to {ao,...,am_i} and {ö0,-.-,ô^-_1}. By assumption and

the manner of constructing /', /' has no fixed point. Any local maximum of F"

is at some a¿ and F' preserves the order among {afc: k E Z}. Moreover p(F',b'0) =

p(F',b'0) < p(F',a0) = p(F',a0). Thus /' satisfies (1), (2) and (3). By the manner of

constructing /' from /, g = j  also satisfies (4) (see [5]).



324 RYUICHIITO

Let / satisfy Hm¡n with respect to Am = {ao,...,om_i} and Bn = {bo,...,

6„_i}. LetC = {c0,...,cm+n_i}=AnUß„ andO<c0<---<cm+n_i on S. Let

c( = cv + w for c = w(m + n) + n, c, n, wE Z and 0<n <m + n — 1.

Let I„ = [cr,,cv+i], n = 0,...,m + n- 2, and /m+„_i = [cm+n_i,c0] be intervals

on S. We say I¿ f-covers Iv p times if there exist subintervals Ki,..., Kp of /^ with

pairwise disjoint interiors such that f(KÎ) = In for i = 1,... ,p.

DEFINITION. An A-grapÄ o// with respect to Am and Bn is an oriented graph

with vertices II,...,/m+n_i such that if I¿ /-covers L, p times but not p +1 times

then there are p arrows from I¿ to L,. A sequence /¿0 —►-► /¿r in an A-graph of

/ is called a path of length r, and the path is called a loop if /¿0 = /jr. A loop is

called simple if /¿Q / /¿^ for 0 < a < ß < r.

LEMMA 1.4. Let f satisfy Hm¡n where 1 < m and 1 < n, have no fixed points

and be the simple (m,n)-skeleton of itself. Then the A-graph of f with respect to Am

and Bn has three different simple loops Li, L2, and L3 through a vertex, say J, of

length li, I2 and I3 such that li < m, h < n and I3 < m + n, and the last vertices

before J of Li, L2 andL3 are all different.

Proof. We may assume p(F,ao) > p(F,bo) for a lifting F of /. Let F have a

local maximum at a¿. Let bj be the adjacent one of a¿ to the right (o¿ < bj) among

{afc: k E Z} U {b¡: I £ Z}. Then F(a¿) > F(bj) and there exists as and bt such

that F(ai) > as > bt > F(bj), (bt,F(ai)} n {b¡: / £ Z) = 0 and \bt,as) C\{ak:kE

Z} = 0. And we note a¿+i = inf{afc : a*; > bj) and bj-i = sup{6¡ : 6¡ < ai). Since

{ao, ■ ■ ■ ,am-i} are periodic and / has no fixed point, there exists a < m — 1 such

that Fa(as) = o¿ + v for some v E Z. Since / is simple and p(F, ao) > p(F, bo), 6¡ <

at implies F(bi) < F(ofc). Thus we have Fa(bt) <ai + v and so Fa(bt) < 6j_i + v.

Let J = ir([bt,as]), then fa(J) D 7r([6j_i,a¿]) and f(n([bj^i,ai])) D J. On the other

hand, we have Fß(bt) = bj + w for some ß < n—1 and wE Z. Thus F@(as)>bj+w

and Fß(aa) > ai+í +w. Therefore f0(J) D Tx([bj,ai+i\) and f(7c([bj,ai+i])) D J.

Now we have two different intervals say Ip C 7r([bj^i,ai]) and Iq C ix([bj,o¿+i])

such that fa(J) D Ip, f(Ip) D J, fß(J) D Iq and f(Iq) D J where 0 < a < m -1
and 0 < ß < n — 1. Furthermore we have another interval IT = n([ai, bj]) satisfying

f(Ir) D J- As p(F, aa) # p(F, bt), we have f(J) D Ir for some o £ N large enough.

Since we have only m + n different intervals on S, there exists 0<7<m + n—1

such that p(J)D Ir- Therefore we have three different loops of length a +1, ß+1

and 7 + 1 from J to J. If any of them is not simple, then it is easy to see we can

get an even shorter loop which is simple and has the same last vertex before /.

Consequently the A-graph of / has three simple loops which satisfy the statement

of the lemma.

LEMMA 1.5. Let f satisfy Hm¡n and the A-graph of f with respect to Am and

Bn have three simple loops Li, L2 and L3 through a vertex J of length 1%, ¿2 and I3

respectively where h < h <h- Assume the last vertices Ip, Iq and Ir of Li, L2 and

L3 before J are all different, and thatLi, L2 andL^ are the shortest loops of all the

loops through J whose last vertices are Ip, Iq and Ir respectively. Then the A-graph

of f has a subgraph which has just three simple loops Li, L'2 andL'3 all through J of

length li, ¿2 and I3 respectively such that the last vertices ofL'2 and L'3 before J are

Iq andlr respectively.

PROOF. If L2 does not intersect with Li at vertices other than J, then let

L2 = L2. If L2 intersects with Li, let Ia / J be the last vertex of L2 that is also
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on Li. Let L2 be the loop which is on Lx from / to Ia and is on L2 from Is to

J. Because of the shortness of Li and L2, the length of L2 is ¿2- If L3 does not

intersect with neither Li nor L2 outside of J, let L3 = L3. If L3 intersects with Li

or L2, let It 9^ J be the last vertex of L3 that is also on Li or L2. Let L3 be the

loop which is on either Li or L2 from J to It depending on whether It is on L or

on L2, and is on L3 from It to J. Again by the shortness of L\, L2 and L3, the

length of L3 is l3. Therefore the subgraph consisting of Lx, L2 and L3 satisfies the

requirement.

Let C be an A-graph of 0 and s be the number of vertices of G. Following [3], we

associate to G an s X s matrix M = (m^) such that m¿j = (number of arrows from

li to Ij). We call the logarithm of the spectral radius (i.e. of the largest eigenvalue)

of M the entropy of G and denote it by h(G).

LEMMA 1.6 [3, LEMMA 1.5].  If G is an A-graph ofg, then h(G) < h(g).

Since h(G) is the limit of ^log (sum of entries of Mn) the following is trivial.

LEMMA 1.7.  Let G' be a subgraph ofG, then h(G') < h(G).

As a special case of Theorem 1.7 of [3] we have the following.

LEMMA 1.8. Let G be a graph consisting of three different simple loops Li, L2

and L3 all through a vertex J of length li, I2 and ¿3 respectively. Assume G has no

other simple loops. Let M be the matrix associated to G. Then the characteristic

polynomial of M is (—l)s(xs—xa~l1 —xs_ia — x3~ls), where s is the number of vertices

ofG.

The next lemma is easily proved by direct calculation or by application of Lemma

1.8 of [3].

Lemma 1.9. Letm, n, li, I2 andl^ be positive integers such thatli <h< h, h <

m, ¿2 < n andls <m + n. Letpm,n andv be the largest zeros of xm+n — xm — xn — 1

and of xlz — ¡r'3-il — xls~l3 — 1 respectively. Then

(1) t¿m,n < v,

(2) if\<m'<m and I <ri <n, then ßm,n < Pm^n'-

THEOREM A. Let f satisfy Hm¡n. Then h(f) > logp,m,n where p,m,n is the largest
zero ofxm+n -xm-xn-l.

PROOF. By Lemma 1.3 and 1.9(2), it suffices to prove h(g) > logp,m>n- for g

satisfying (1), (2) and (3) of Lemma 1.3. Let G be the A-graph of g with respect to

the two orbits of period m and n. Then, by Lemmas 1.4 and 1.5, G has a subgraph

G' which has s vertices and just three simple loops Li, L2 and L3 all through J

of length li, ¿2 and I3 respectively such that 1% < I3 < I3, h < min{m,n'}, I2 <

max{m,n'} and I3 <m + n'. By Lemma 1.8, h(G') = logi/ where v is the largest

zero of Is - xs~l1 - xs~h - xs~l3, i.e. that of xli - xh~l1 - a;'3-'3 - 1. By Lemma

1.9(1), we have //TOin- < v and by Lemmas 1.6 and 1.7,

h(g) > h(G) > h(G').

Therefore h(g) > logp,m,n'-
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2. In this section we shall prove Theorem B stated in the introduction. First we

need several lemmas from [3].

LEMMA 2.1 [3, THEOREM 3.2]. /// is an endomorphism of the circle of |deg/| <

1, F is a lifting of f and F has a periodic point of period m > 1, then h(f) >

(log\p)/2fc if m = 2k -p, p is odd and p > 1, where Xp is the largest zero of xp —

2xp-2-l.

LEMMA 2.2 [3, PROPOSITION 3.4]. Let deg/ = -1 and let x £ R be a point

such that 7r(z) is a periodic point of f of period m, m odd. Then there exists a lifting

F of f such that x is a periodic point of F of period m.

The next lemma is trivial.

LEMMA 2.3. The largest zero Xm of xm — 2xm~2 — 1 is larger than the largest

zero fj,min ofxm+n — xm — xn — l where m>2 and n > 2.

The following is one of the main theorems of [3].

LEMMA 2.4 [3, THEOREM 3.9]. Let f be an endomorphism of S of degree 1.
Let f have a fixed point x and a periodic point y of period n > 1 such that p(F, x) /

p(F,y) where F is a lifting of f. Then h(f) > log/z„ where //„ is the largest zero of

the polynomialxn+1 —xn — x — \.

PROOF OF Theorem B. (1) deg/ = 1. If / has no fixed point, then this

theorem is a special case of Theorem A which we have proved in §1. If / has a

fixed point x, then we may choose a lifting F of f such that p(F, x) = 0. Let o and

b be periodic points of / of period m and n respectively such that m > 2, n > 2

and (m, n) = 1. If p(F, a) = p(F, b) = 0, then a and b are also periodic points of F

of period m and n. As (m,n) = 1, we may assume m is odd and m > 3. Then,

by Lemmas 2.1 and 2.3 we have h(f) > logXm > log¿¿m,„. If either p(F,a) / 0 or

p(F, b) / 0, then by Lemma 2.4, h(f) > logp-m or h(f) > log/¿„. On the other hand,

by Lemma 1.9(2), min{/im,^n} > pm,n- Therefore h(f) > log/im,n.

(2) deg/ = —1. We may assume m is odd and m > 3. By Lemmas 2.2, 2.1 and

2.3, h(f) > logXm > log/im>n.
(3) deg/ = 0. We may assume m is odd and m > 3. In this case, given any

periodic point of /, F has a periodic point of the same period (see [3, Proposition

3.3]). therefore, by Lemmas 2.1 and 2.3, we have h(f) > logXm > log/xm,n.

(4) |deg/| > 2. h(f) > log|deg/| > log2 > log/xm,n.
Finally we give an example to show our estimate of the smallest entropy in

Theorem B is the best possible.

EXAMPLE. Let m and n be positive integers such that 1 < m < n and (m, n) =

1. Then there exist p and q£N such that p<m, q<n and np — mq = 1.

Let us define F : R-* R as the following.

x + -, 0<i<l--,
n n

2m-l/       n-lX     o-l     r"'i-t;--^       !

m — IV n    /       n n mn
F(x) =

(l-m)(i-l) + - + l, i_J_<a;<i
n mn

sndF(x + k) = F(x) + kfoTk£Z.



MINIMAL ENTROPY FOR ENDOMORPHISMS OF THE CIRCLE 327

This is a piecewise linear function obtained by modifying x + q/n slightly to

assume a maximum l + (g + l)/n-l/mn at x = 1 — 1/mn. Let f(x) = 7rF(a;)|[0,1],

then it is an endomorphism of S of degree 1 and has periodic points ix(jq/n), j =

0,..., n — 1, of period n and it((iq + l)/n — 1/mn), i = 1,..., m, of period m. Let G

be the A-graph of / with respect to these periodic points of period m and n shown

above. Then it is not difficult to see h(f) = h(G) = \ogp,m,n-
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