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APPROPRIATE LOCALLY CONVEX DOMAINS FOR

DIFFERENTIAL CALCULUS

RICHARD A. GRAFF AND WOLFGANG M. RUESS

Abstract. We make use of Grothendieck's notion of quasinormability to produce a

comprehensive class of locally convex spaces within which differential calculus may

be developed along the same lines as those employed within the class of Banach

spaces and which include the previously known examples of such classes. In

addition, we show that there exist Fréchet spaces which do not belong to any

possible such class.

0. Introduction. In [2], the first named author introduced a theory of differential

calculus in locally convex spaces. This theory differs from previous approaches to

the subject in that the theory was an attempt to isolate a class of locally convex

spaces to which the usual techniques of Banach space differential calculus could be

extended, rather than an attempt to develop a theory of differential calculus for all

locally convex spaces. Indeed, the original purpose of the theory was to study the

maps which smooth nonlinear partial differential operators induce between Sobolev

spaces by investigating the differentiability of these mappings with respect to a

weaker (nonnormable) topology on the Sobolev spaces.

The class of locally convex spaces thus isolated (the class of Z)-spaces, see

Definition 1 below) was shown to include Banach spaces and several types of

Schwartz spaces. A natural question to ask is whether there exists an easily-char-

acterized class of D-spaces to which both of these classes belong. We answer this

question in the affirmative in Theorem 1 below, the proof of which presents a much

clearer picture of the nature of the key property of Z)-spaces than the corresponding

result [2, Theorem 3.46].

It is immediate from Theorem 1 that every Fréchet quasinormable space is a

D-space. It is natural to ask at this point whether every Fréchet space is a D-space.

We answer this question negatively in Theorem 2. Specifically, we show that a

Fréchet Montel space is a Z)-space if and only if it is a Schwartz space.

1. Notation and definitions. For V a locally convex space, V'h will denote the

topological dual space V of V, endowed with the (strong dual) topology of uniform

convergence on the bounded subsets of V. If U is a zero neighbourhood in V, then

U° denotes the polar set of U in V, defined by U° = [v' E V\ | v'(u) |«S 1 for all

u E U). The space of Minear maps from V into another locally convex space W
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will be denoted by U(V, W), and, unless otherwise stated, will be assumed to be

endowed with the topology of uniform convergence on the bounded subsets of V.

To maintain consistency with [2], we shall continue to follow the terminology from

[9], using the term "compactly generated" when referring to a Hausdorff A>space; i.e.

a Hausdorff topological space in which subsets are closed if and only if they have

closed intersections with each compact subset [5, Chapter 7, p. 230].

Definition 1 [2, Definition 3.21]. A D-space V is a locally convex space with the

following property: if U is a neighbourhood of zero in V, E a normed space, r E N, and

/:£/-» Lr(V, E) a continuous map, then there exists a neighbourhood W of zero,

W C U, and a continuous seminorm v on V, such that f(W) C Lr„(V, E) and such that

the map f: W -* L'V(V, E) is continuous.

(Here, L[(V, E) denotes the normed linear space {f E U(V, E) \ v(f) < oo},

with v as norm, where v(f) = sup{|| f(xx,... ,xr)\\ E \ v(x¡) < 1, 1 < i < r}.)

Definition 2 [2, Definition 3.39]. An exponential space V is a locally convex

space such that V is compactly generated for all r E N.

Remark. Let F be a locally convex space, and Z a closed linear subspace of V.

(a) If F is an exponential space, then Z and V/Z are exponential spaces.

(b) If V is metrizable, then V is an exponential space.

2. Results. Our results follow by establishing connections between /»-spaces and

the following class of spaces, introduced by A. Grothendieck.

Definition 3 [3, III. 1, Definition 4, p. 106]. A locally convex space V is

quasinormable, if for every equicontinuous subset H of V there exists a zero neighbour-

hood U in V such that on H the strong topology (uniform convergence on bounded sets)

and the topology of uniform convergence on U coincide.

Equivalently, a locally convex space V is quasinormable, if, for every zero

neighbourhood U in V, there exists a zero neighbourhood Win V with the following

property: for every e > 0, there exists a bounded subset Be of V such that W C ell +

Be [3, III. 1, Lemma 6, p. 107]. (The various formulations of quasinormability and the

following example on Schwartz spaces are also to be found in [4, Chapter 3, §15,

Example 6(c), (d), p. 286].)

Examples. 1. Every Schwartz space, hence every nuclear space, is quasinormable.

More precisely: Schwartz spaces are exactly those quasinormable locally convex

spaces whose bounded subsets are precompact [3, III.4, Definition 5, p. 117].

2. Every DF space [3, 1.1, Definition 1, p. 63] (see also [6, §29.3]) and, more

generally, every generalized DF (gDF) space in the sense of [8, Definition 2.11], is

quasinormable [7, Proposition 3.1]. In particular, given a metrizable locally convex

space Z, the precompact dual Z'pc (uniform convergence on the precompact subsets

of Z), the strong dual Z'b, and, if Z is complete, also the Mackey dual Z'wc (uniform

convergence on the weakly compact disks in Z) are gDF, and hence quasinormable.

Theorem 1. Every quasinormable exponential locally convex space is a D-space.

Corollary. The following locally convex spaces are D-spaces:

(a) Metrizable quasinormable locally convex spaces, in particular, Fréchet Schwartz

spaces.
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(b) Duals of metrizable locally convex spaces, endowed with the topology of uniform

convergence on precompact sets. In particular, bw*-spaces (precompact duals of

Banach spaces, [2, Definition 2.19]), and strong duals of Fréchet Monte! spaces.

Note that the class of exponential quasinormable locally convex spaces contains

normed spaces, all other quasinormable metrizable spaces, and the precompact duals

of any of these spaces.

The following proposition, which extends Grothendieck's original characterization

of quasinormability, is crucial to the proof of Theorem 1.

Proposition. A locally convex space V is quasinormable if and only if for every

normed space E and r E N the following property holds: on every equicontinuous subset

H of U(V, E), the topology of uniform convergence on bounded sets coincides with the

topology of uniform convergence on a certain zero neighbourhood.

Proof. Sufficiency of the condition being obvious from the definition of quasi-

normability, only necessity needs to be checked. Assume for the moment that r = 1

and let H C L(V, E) be equicontinuous. Denote by B the norm unit ball of E. Then

U= r\6//M~\B) is a zero neighbourhood in V. Since V is quasinormable, there

exists an absolutely convex zero neighbourhood W inV with the following proper-

ties:

(i) WCU;
(ii) For every a > 0, there exists Ma bounded in V such that W C all + Ma.

Let now e, p > 0 be given and let Wp* = {u G L(V, E) | u(pW) C eB} be the

corresponding zero neighbourhood for the uniform convergence on W. According to

(ü), there exists C bounded in V such that

(in) WC ((2Py]e)U + C.

Let D = 2pC and W¿ = {u E L(V, E) | u(D) C eB}, the corresponding zero

neighbourhood for the topology of bounded convergence. Then, for h G H n W¿,

we have:

(iv) h(pW) C h(2~]eU + pC) C 2~leB + 2~lh(D) C eB, i.e.

(v) h n w¿ c w;.
This shows that, on H, the topology of bounded convergence is finer than that of

uniform convergence on W. This completes the proof, for the converse inclusion

holds trivially. The proof for r > 1 is an obvious modification of the above

argument.    D

Proof of Theorem 1. Let V be a quasinormable exponential locally convex

space, U an open subset of V, E a normed space, r E N, and /: U -» U(V, E) a

continuous map. According to [2, Lemma 3.42, p. 62], the fact that V is exponential

imphes that the map

g = ev°(fX I): UXV^E

(u, w) \-> f(uXw)

is continuous. Hence, for a given x G U, the continuity of g at (x,0) and the fact

that g(x, 0) = 0 together imply that there exists a neighbourhood Ux of x and a

continuous seminorm y on F such that \\g(y, w)\\E < 1 for all y G Ux and for all
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w = (wx,...,wr) G V such that v(w¡) « 1. In terms off, this means that f(Ux) is a

bounded subset of L[(V, E), and thus that f(Ux) is an equicontinuous subset of

U(V, E). Since /: Ux -> f(Ux) is continuous for the topology of bounded conver-

gence and f(Ux) is equicontinuous, the theorem follows from the above proposition.

D

We are now going to prove a partial converse to Theorem 1: in order that a

Fréchet Montel space (a Fréchet space whose bounded sets are relatively compact)

be a Z>-space, it necessarily must be quasinormable, and thus a Schwartz space.

Theorem 2. A Fréchet Montel space is a D-space if and only if it is a Schwartz

space.

Remark. It seems worth noting that the strong dual of any Fréchet Montel space

is a /»-space (Corollary to Theorem 1), whereas the Fréchet Montel spaces them-

selves are not always Schwartz [6, §31, 5, p. 433] and hence not /»-spaces. Interest-

ingly enough, it thus turns out that, among the Fréchet Montel spaces, the (nonlin-

ear) /»-space property exactly singles out those FM-spaces that have the additional

(linear) property of being Schwartz.

Proof of Theorem 2. We have to show that, given a zero neighbourhood U in a

Fréchet Montel /»-space V, there exists another zero neighbourhood W with the

property that, on U° C V, the strong topology and the topology of uniform

convergence on W coincide. We first proceed to embed (U°, b) homeomorphically

into V and to extend the inverse of this embedding to a continuous map / from V

onto (U°, b). An immediate application of the /»-space property will then complete

the proof.

Step 1. Construction off. Since Fis a Fréchet Montel space, (U°, b) is a compact

separable metric space (see [6, §27, 2(5), p. 370]). We now use results from

infinite-dimensional topology [1]: (U°,b) is homeomorphic to a compact convex

subset C of I2, which, in turn, is an absolute retract in I2 (as usual, I2 denotes the

Hilbert space of square-summable scalar sequences); and V, being an infinite-dimen-

sional separable Fréchet space, is homeomorphic to I2. We thus arrive at the

following sequence of spaces and mappings: /: F» / ->C«»g (U°,b), where h

denotes a homeomorphism between V and l2, g the homeomorphism between C and

(17°, b), and r a continuous retraction from I2 onto C. If we now let K= h~\C),

then K is a compact subset of V such that /1 Kisa continuous bijection, and thus, by

compactness of the spaces involved, a homeomorphism of K onto (U°,b).

Step 2. Let x E K. By the /»-property of V, there exist an open neighbourhood Ux

of x and a continuous seminorm \x on V such that f(Ux) C Lx(V, R) and such that

f\Ux: Ux -» LX(V,R) is continuous. The compactness of K now assures that there

exist xx,... ,xn E K such that K C U [Ux \i E il,...,»}}. Choosing the continuous

seminorm A on V to be A = sup{Xx ,...,XX }, we conclude that/|^: K -* LX(V, R) is

continuous. Hence, U° —f(K) is compact in LX(V, R), i.e. U° is compact with

respect to the topology of uniform convergence on the zero neighbourhood associ-

ated with A. Since this topology is at least as fine as the strong dual topology, the

two topologies coincide on U°. This completes the proof.    D
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Note. Compactness of U° for the strong dual topology was crucial to the above

demonstration that a Fréchet Montel /»-space is quasinormable. Thus this technique

is not applicable to the non-Montel case, where the bounded sets are not necessarily

relatively compact. This follows from the fact that, according to the Banach-

Dieudonné-Theorem [6, §21, 10(1), p. 272] and standard results on compactness, a

Fréchet space with the property that all equicontinuous subsets of its dual are

relatively compact for the strong dual topology, must necessarily be Montel.
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