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COUNTING FIXED POINTS

IRA ROSENHOLTZ

Abstract. In this paper, we develop a machine which enables us to predict, in many

cases, the exact number of fixed points of a local diffeomorphism. Though much

more general, our technique applies in particular to locally expansive maps on

compact, connected, orientable differentiable manifolds.

Introduction. The Lefschetz number has often been interpreted as a count of the

"algebraic number" of fixed points of a mapping. The purpose of this note is to

show that, in many cases, it can be used to predict the exact number of fixed points.

Although our technique is much more general, it applies in particular to various

types of locally expansive maps, and as a consequence we obtain the following

Theorem. Let M be a compact, connected, orientable, differentiable manifold, and

suppose /: M -» M is a differentiable expanding map. Then the number of fixed points

of f is the absolute value of the Lefschetz number of f.

We conclude with an example showing that the orientability hypothesis is neces-

sary.

Definitions. The notions of differentiable manifolds and differentiable maps, the

tangent space TMp at a point p, the derivatives Dfp: TMp -* TNf(p) induced by a

differentiable map /: M -> N between differentiable manifolds, local diffeomor-

phisms, and orientability will be defined à la [JM] or [G/P]. By "differentiable" we

shall always mean "at least C1."

In particular, a manifold may be thought of as a subset of some big Euclidean

space, so that the tangent space has a natural interpretation as a linear subspace. In

this context, a differentiable map is a local expansion provided there is a number

k > 1 so that \\Dfp(h)\\ > k\\h\\, where II II represent the usual Euclidean norm. In

[MS], Shub defines a C1 map /: M -> M to be expanding if there is a c > 0 and a

k > 1 such that 11 D(fm)x(h)\\ ^ ckm\\h\\ for all positive integers m. Assuming M is

compact, this a priori weaker notion has the advantage of being independent of the

embedding. It will be seen that our techniques apply with equal ease to both types of

expansive maps, as well as many other local diffeomorphisms. (For the connections

between various types of expansive maps, see [WR]. The fixed point theory of such

maps has been examined in [IR1, IR2, HR, GJ, SL and H/R].)

Received by the editors October 8, 1981 and, in revised form, March 8, 1982.

1980 Mathematics Subject Classification. Primary 55M20, 58C30; Secondary 47H10, 54H25.
Key words and phrases. Fixed points, local diffeomorphisms, local expansions, Lefschetz number.

©1982 American Mathematical Society

0002-9939/82/0000-0311/S03.00

341



342 IRA ROSENHOLTZ

Outline of proof. Step 1. Suppose that M is a compact, connected differentiable

manifold of dimension m, and/: M -» M is a differentiable map having only finitely

many fixed points. The Lefschetz Theorem asserts that the Lefschetz number of /,

L(f), which is a homotopy invariant, is (-l)m2sign[det(D/x — /)], the summation

taken over all of the (finitely many) fixed points off.

(Local expansions and expanding maps have only finitely many fixed points since

1 is clearly not an eigenvalue of Dfx at a fixed point x.)

Therefore, to show that the number of fixed points of /is the absolute value of the

Lefschetz number, it is necessary and sufficient to show that if xx and x2 are two

fixed points off, then det( Dfx — I) and det( Dfx  —I) have the same sign.

I tried for a long time to "go continuously" from Dfx — I to Dfx — I, but was

unable to make sense out of this. That / was doomed to failure, even if / is a

diffeomorphism, is shown by the following example, which of course is not a local

expansion.

Let g: [-1,1] t* [-1,1] be defined by g(t) = {(t* + t). And let / map the unit

circle in the complex plane, Sx, to itself be defined by /(exp(777)) — exp(7rg(r)),

t E[-l,l]. Then/is a diffeomorphism, / has exactly two fixed points (namely 1 and

-1), but since/is homotopic to the identity, L(f) — x(Sx) — 0, where x represents

the Euler characteristic. (It is interesting to note that there is a sense in which Df

"sort of has eigenvalue 1. Namely, by lifting/ to a map F of the universal covering

space, R, all of the tangent spaces become identified with a single copy of R, and the

lifted map has derivative F'(x) = Dfx which attains the value 1. See [R/R].)

Thus we must go by a more circuitous route.

Step 2. Suppose D is a linear transformation from a finite dimensional real vector

space to itself, and suppose both D and D — I ave isomorphisms. Then we will show

that a necessary and sufficient condition for det D and det(£> — /) to have the same

sign is that the number of eigenvalues of D which lie in the open interval (0,1),

counted with multiplicity, is even. In particular, if there are no eigenvalues in the

interval (0,1), then det D and det(D — I) have the same sign. Hence, since deriva-

tives of local expansions obviously have no eigenvalues in this interval, we get that

sign[det(D/x)] = sign[det(Z)/t — /)] at a fixed point of a local expansion. (This is a

special case of a result of Leray and Schauder [L/S].)

Consider p(t) = det(D - tl) for t E [0,1]. Then p(0) = det(D) and p(l) =

det(D — I), and these are both nonzero by hypothesis. Of course p(t) is a poly-

nomial—in fact it is ± the characteristic polynomial of D—and a root of p(t) is

precisely an eigenvalue of D. Now, if X is an eigenvalue of odd multiplicity, thenp(i)

changes sign in a small neighborhood of X, and if À is an eigenvalue of even

multiplicity, then p(t) does not change sign near X. Thus if the number of

eigenvalues of D in (0,1) counting multiplicity is even, then p(0) and p(l) have the

same sign, and conversely.

(In the example given at the end of Step 1, note that for one of the fixed points,

namely 1, Dfx had an eigenvalue in the interval (0,1), namely {-.)

It is worth noting that the hypothesis of being a local expansion is much, much

stronger than the hypotheses of Step 2. For example, Step 2 applies to D = [¡/ x^2]
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and D = [°/2~x/l] both of which are contractions (!), the second of which has

complex eigenvalues, and to D = [°/2 ~20] which also has complex eigenvalues, but

is " hyperbolic".

Step 3. In the previous step, we have seen that, very often, sign[det(Dfx — I)]

equals sign[det( Dfx)]. While it was difficult to go from one fixed point to another

and keep track of sign[det(Dfx — I)], it is not difficult to keep track of sign[det(Dfx)],

at least when M is orientable. We will show the following: Suppose M is a (compact)

connected orientable differentiable manifold and /: M -» M is a local diffeomor-

phism. If xx and x2 axe fixed points of/, then sign[det( Dfx)] = sign^e^D/^ )]. Of

course, local expansions from a manifold to itself are local diffeomorphisms.

The idea is this. The sign [det(Dfx )] determines whether Dfx is orientation

preserving or reversing (1 if preserving, -1 if reversing) as a function from TMX to

itself. This, in turn, determines the local behavior of/. But if M is orientable, we can

extend that definition by defining Sign[x] to be 1 or -1 depending upon whether Dfx

is orientation preserving or reversing. (See [JM, pp. 26-27].) Now if / is a local

diffeomorphism and M is connected, it is easy to see that x cannot change Sign, and

thus if xx and x2 axe fixed points, det( Dfx ) and det( Dfx ) have the same sign. (Cf.

[G/P, p. 104].)
Example. We now outline an example showing that the orientability hypothesis is

necessary. Local expansions are nontrivial covering projections, so if a compact

manifold admits a local expansion to itself, it must have zero Euler characteristic.

Thus a candidate for a minimal counterexample is the Klein bottle.

Consider the map from the Klein bottle to itself " induced" by the linear map 31.

(The fixed points are indicated as dots.)

n n r
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This map is expanding. It has 4 fixed points. And the Lefschetz number is

L = 1 — 3 = -2. "Thus, for this map, the number of fixed points does not equal the

absolute value of the Lefschetz number."

Some questions. 1. Does this result generalize, in particular to PL manifolds,

manifolds-with-boundary, or topological groups? What if M is not compact?

2. Suppose M = Dm, the w-dimensional disk in Rm, and /: M -» M is differentia-

ble and Dfx never has 1 as an eigenvalue. Does / have a unique fixed point? (Here it

is easy to make sense of going continuously from Dfx — I to Dfx — I without the

necessity of Steps 2 and 3.) My guess is yes. Results of Kellogg [RK] and later Smith

and Stuart [S/S] imply a positive answer to this question under the additional

assumption that / has no fixed points on the boundary. See [R/R] for some related

results.

The author would like to thank the referee for bringing some references to his

attention.
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