
CAUCHY CONDITIONS ON SYMMETRICS

S. W. DAVIS1

Abstract. We call a symmetric d on a space X a wC symmetric if whenever A Q X

and there exists e > 0 such that d(x, y) » e for all x, y G A, then /( is relatively

discrete. We show that there are no ¿-spaces which admit wC symmetries. The wC

notion is extended to certain weaker structures such as S-spaces with similar results.

1. Introduction. A symmetric on a topological space A1 is a distance function

d: X X X-* [0, oo) such that (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x) for all

x, y, and (iii) FEXis closed iff d(x, F) > 0 for all x E X\ F.

A space which admits a symmetric is called symmetrizable. A first countable

symmetrizable r2-space is a semimetrizable space, and the converse is true assuming

all spaces are T2, which we shall do.

Semimetrizable spaces and symmetrizable spaces have been studied for many

years. Many of the properties of semimetrizable spaces have been shown to carry

over to the non-first countable case, although in many cases the arguments have

been much more difficult. There are a few notable exceptions, where properties do

not carry over, see [B, S, DGN], and some questions still remain. In particular, we

address in this note the following question:

Question 1.1 [Arhangel'skn, Rudin]. Is every regular Lindelöf symmetrizable space

separable?

It will not be easy to find a counterexample, of course, since Lindelöf symmetriz-

able spaces are hereditarily Lindelöf [N]. Thus a counterexample would be an

L-space.

It may be that this question can be shown to have a positive answer, but at this

writing that is not known. We provide a solution to the problem for a large class of

symmetrizable spaces by considering a property related to Cauchy sequences.

2. Cauchy conditions.

Definition 2.1 [AN]. A symmetric d on Xis called Cauchy iff limn^0Od(xn, xn+x)

= 0 whenever (xn: n E «) is a convergent sequence in X.

Subsequently, Arhangel'skii defined a weaker property which he called weakly

Cauchy.

Definition 2.2 [AJ. A symmetric d on X is called weakly Cauchy iff whenever

A EX and there exists e > 0 such that d(x, y) > e for all distinct x, y G A, then A

is closed.
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Since symmetrizable spaces are sequential, it is clear that this is a weaker

condition. The set A in 2.2 could have no convergent sequences if the symmetric

were Cauchy, and thus A would be closed.

This condition was used by Nedev to partially answer 1.1 in [N].

Theorem 2.3 [Nedev]. A Lindelöf space which admits a weakly Cauchy symmetric is

separable.

We now define an even weaker condition and show that 1.1 still has a positive

answer in this case.

Definition 2.4. A symmetric d on X is called wC iff whenever A EX and there

exists e > 0 such that d(x, y) > e for all distinct x, y E A, then A is relatively

discrete.

Since for any closed subset A E X, where d is a symmetric on X, d \ A X A is a

symmetric for the relative topology on A, it is clear that any weakly Cauchy

symmetric is a wC symmetric.

We now give an example of a wC symmetric which is not weakly Cauchy. This

example has previously been described in [HS].

Example 2.5. Let X = R. Points of R \ {0} will have usual neighborhoods. A basic

neighborhood of 0 will have the form {0}U U {(n — en, n + en): n E T} where

e„ > 0 for each n E T E Z and Z\T is finite. (Here Z denotes the integers.) Clearly

X is separable, hereditarily Lindelöf and not first countable since x(0, X) > w,. We

now define a symmetric d on X as follows:

0, x = 0=y,

\x-y\,     ifx^Oandy^O,

1, ifx = 0andyGRxZ

or y — 0 and x E R \ Z,d(x,y) = d(y,x)

1

| x + y |
ifx = Oandy E Z\{0}

ory = 0 andx G Z\{0}.

It is easy to see that d is a wC symmetric for X. However Z\ {0}, while relatively

discrete, is not closed. Thus d is not weakly Cauchy.

We note that any symmetric on a semimetrizable space is a wC symmetric. This is

true since x E Int Bd(x; e) for any e > 0 and x E X when X is first countable and d

is a symmetric on X. Thus results obtained for wC symmetries strengthen the

corresponding results for semimetric spaces.

Theorem 2.6. A Lindelöf space which admits a wC symmetric is separable.

Proof. Since Lindelöf symmetrizable spaces are hereditarily Lindelöf, this will

follow from the more general result 3.4.

3. Weakly first countable spaces. The notion of wC symmetric can be easily

extended to several weaker types of structures.
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Definition 3.1. A wfc-system for a space X is a function B: w X X -» <$(X) such

that for each x E X, B(n + l, x) E B(n, x) for each n E u and í\ew.B(w, x) =

{x}, and £/ Ç. X is open iff for each x E U there exists nx E w with ^(n^, x) E U.

A space which admits a wfc-system is called weakly first countable [A2].

Definition 3.2. An ^-system for a space X is a wfc-system for X with the

additional property that if F E X is closed and x & F then there exists n G « such

that   for   any  y G 5(n, x) \ [x]   there   exists   «^ G w   such   that   (x, y) (£

Uzef5(n^,z).

A space which admits an ^-system is called an espace [HS].

Definition 3.3. A wfc-system B for X is called wC iff whenever A EX and there

exists n E os such that B(n, x) n A = {x} for each x E A, then A is relatively

discrete.

If J is a symmetric on X, B(0, x) = X, and B(n, x) = [y: d(x, y) < \/n) for

n E u \ {0}, then B is a wfc-system (in fact, an ^-system) for X, and B is wC iff d is

wC.

Theorem 3.4. A hereditarily Lindelöf space which admits a wC ^-system is separa-

ble.

Proof. Suppose X is hereditarily Lindelöf and B is a wC ^-system on X. Let DQ be

the set of isolated points in X. Since X is hereditarily Lindelöf, D0 is countable. For

n £ w \ {0}, we define Dn as follows: D„ is a maximal subset of X such that x E Dn

implies B(n, x) H Dn= (x). Since 5 is wC, Dn is countable for each n >'T.

We now show £> = Un6coZ>„ is dense. Suppose U ¥= 0 and (7 is open. If

t/ n D = 0, then we choose x G 17, and since B is an ^-system there exists n E u

such that for y E B(n, x) \ {x) there exists ny G w such that {x, y) (£

U2ÊOfi(n , z). Since x is not isolated, choose y E B(n, x) \ {x}, and k> ny such

that B(k, x) EU and B(k, y) E U. Now either Dk U {x} or Dk U {y} will con-

tradict the maximality of Dk, and the proof is complete.

We turn now to the question of when a weakly first countable space has a wC

wfc-system. It is clear that if B is a hereditary wfc-system, then B is wC. It follows

from known results that this is quite a restriction.

Theorem 3.5. // B is a hereditary wfc-system for X, then {B(n, x): n E «} is a

neighborhood base at x.

Proof. Obviously, it is enough to show that for each n E u, x E Int B(n, x).

Since weakly first countable spaces are sequential [HS], X is hereditarily sequential.

Thus Zis Frechét [A3], and hence x G Int B(n, x) for each n E « [HS].

Burke has shown in [Bu] that every semimetrizable space has a compatible weakly

Cauchy symmetric. It is natural to ask if a similar theorem can be obtained for

symmetrizable spaces. The space in Example 2.5 has a compatible weakly Cauchy

symmetric. For regular spaces this remains open; however, Kofner has given in [K], a

T2 symmetrizable space which does not even admit a wC wfc-system.

4. Questions.

Question 4.1. Does every symmetrizable T3 space have a compatible wC symmet-

ric, or even a compatible wC ^-system?
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An affirmative answer to 4.1 would show that there are no symmetrizable

L-spaces, answering question 1.1.

Question 4.2. Does every space with a compatible wC symmetric have a compati-

ble weakly Cauchy symmetric?

As noted in §3, the answer is "yes" for first countable spaces and also for

Example 2.5.
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