MAXIMAL INTERSECTING FAMILIES OF FINITE SETS AND n-UNIFORM HJELMSLEV PLANES

DAVID A. DRAKE ${ }^{1}$ AND SHARAD S. SANE

Abstract

The following theorem is proved. The collection of lines of an n-uniform projective Hjelmslev plane is maximal when considered as a collectiion of mutually intersecting sets of equal cardinality.

1. Introduction. A clique of k-sets is a collection of mutually intersecting sets of size k. We write $N(k)$ to denote the minimum cardinality of a maximal clique of k-sets. Apparently the exact value of $N(k)$ is known only for very small values of k. However, Erdös and Lovàsz [7] have obtained the asymptotic lower bound $N(k) \geqslant$ $(8 k / 3)-3$; and Füredi [8, p. 283] writes that he can prove $N(k)<k^{f(k)}$ where $f(k)=c k^{7 / 12}$.

For particular values of k, the preceding upper bound can be greatly sharpened. It is easily proved, for example, that
(1.1) a projective plane of order r is a maximal clique. Consequently
(1.2) $N(r+1) \leqslant r^{2}+r+1$ whenever r is the order of a projective plane.

In addition Füredi has proved the following two theorems (Proposition 1 and Theorem 1 in [8]). (Füredi informs us that (1.3) is joint work with L. Babai.)
(1.3) $N\left(r^{2}+r\right) \leqslant r^{4}+r^{3}+r^{2}$ whenever r is the order of a projective plane.
(1.4) $N(2 r) \leqslant 3 r^{2}$ whenever r is the order of a projective plane.

In this paper we obtain the following common generalization of (1.2) and (1.3).
Theorem 1.1. If r is the order of a finite projective plane, then $N\left(r^{n}+r^{n-1}\right) \leqslant r^{2 n}$ $+r^{2 n-1}+r^{2 n-2}$ for every positive integer n.

Füredi proves (1.3) by constructing a 2 -uniform projective Hjelmslev plane over an arbitrary finite projective plane and then observing that such Hjelmslev planes are maximal cliques. Henceforth we write PH-plane for projective Hjelmslev plane. The more difficult of the two steps in the Füredi program is the PH-plane construction, a construction which has been discovered independently by Füredi [8] and Craig [3] (see also Lüneburg [13]). Since the class of 1-uniform PH-planes is by definition just the class of finite projective planes, conclusions (1.2) and (1.3) both follow by observing that the line set of every n-uniform PH-plane with $n=1$ or 2 is a maximal clique. Similarly we shall obtain Theorem 1.1 as a corollary to the following result.

[^0]Theorem 1.2. The line set of every (finite) n-uniform projective Hjelmslev plane is a maximal clique.

The contribution of this paper is to prove Theorem 1.2. The other step, that of establishing the existence of n-uniform PH-planes over arbitrary projective planes, has already been completed: first by Artmann [1] and later by Drake [6] who used a different construction.

If k can be represented both as $r^{m}+r^{m-1}$ and as $s^{p}+s^{p-1}$ with $m<p$, one should apply Theorem 1.1 with $n=p$ to obtain the sharper bound. Unfortunately such double representations occur for prime powers r and s only when $m=1$ and in the case $2^{3}+2^{2}=3^{2}+3=11+1$. In the latter case one obtains $N(12) \leqslant 133$ by using (1.2), $N(12) \leqslant 117$ by using the Füredi result (1.3), and $N(12) \leqslant 112$ by using Theorem 1.1 with $n=3$. The real value of Theorem 1.1, of course, is that variation in n allows one to obtain a bound for $N(k)$ for new values of k.
2. Prerequisites. We refer the reader to [5, pp. 192-197] for background material that includes the definitions of PH-planes and NAH-planes (near affine Hjelmslev planes). We repeat here some of the material from the cited pages, however, because the conclusions of this paper will interest a number of mathematicians without previous knowledge of Hjelmslev planes. We use the designation H-planes to refer collectively to NAH- and PH-planes.

To every H-plane E is associated a canonical (incidence-structure) epimorphism $\phi: E \rightarrow E^{\prime}$ where E^{\prime} is a projective plane if E is a PH-plane and an affine plane if E is an NAH-plane. Points P and Q (lines g and h) are called neighbors, and one writes $P \sim Q(g \sim h)$, if and only if $P^{\phi}=Q^{\phi}\left(g^{\phi}=h^{\phi}\right)$. One writes \nsim for the negation of \sim. Intersecting lines g and h satisfy $g \sim h$ if and only if $|g \cap h|>1$. We write (P) to denote the set $\{Q: Q \sim P\}$ and (g) to denote the set $\{h: h \sim g\}$. The following result was proved by Klingenberg [10, Satz 3.6]. (See also the remarks on page 260 of [12].)

Proposition 2.1. Let the incidence structure $A=A(H, h)$ be obtained from a PH-plane H by removing a neighbor class (h) of lines as well as all points of H which are incident with lines of (h). Then A is an NAH-plane.

To each finite H-plane E are associated three integers denoted by r, s and t. For any flag (P, g) the integer t is the number of lines h through P which satisfy $h \sim g$ (as well as the number of points Q on g that satisfy $Q \sim P$); $|(P)|=|(g)|=t^{2}$; $s+t$ is the number of lines incident with P; and r is the order of E^{\prime}. Every line contains $s+t$ points if E is a PH-plane, s points if E is an NAH-plane. The equality $s=r t$ holds for all H-planes. The preceding properties of r, s and t were first noted (for PH-planes only) by Kleinfeld [9]. Accordingly we shall designate this collection of properties the Kleinfeld Counting Lemma.

A nearly 1-uniform PH-plane (NAH-plane) is a finite projective plane (finite affine plane). For $n>1$ a finite H-plane E (of either type) is called nearly n-uniform if, for every point P, (1) E induces an incidence structure $A(P)$ on (P) which is a nearly ($n-1$)-uniform NAH-plane, (2) every line of $A(P)$ is induced by d lines of E for
some fixed integer d. Proposition $1.10(11)$ of [5] asserts that $d=r$. A nearly n-uniform H-plane is said to be n-uniform if every $A(P)$ is an ($n-1$)-uniform NAH-plane with a "parallelism," but the reader will not need to understand this notion.

We now establish some conventions. All H-planes in this paper are assumed to be nearly n-uniform for some n. The symbols E_{n}, H_{n} and A_{n} denote a nearly n-uniform H-, PH- and NAH-plane, respectively, with E^{\prime}, H^{\prime} and A^{\prime} as the respective underlying planes. In all cases the order of the underlying plane is assumed to be r.

One writes $P(\simeq i) Q$ to mean that P and Q are joined by precisely r^{i} lines for $0 \leqslant i<n$ and $P(\simeq n) Q$ to mean that $P=Q$. One writes $P(\sim i) Q$ if $P(\simeq j) Q$ for some $j \geqslant i$. The negation of $P(\sim i) Q$ is denoted by $P(\nsim i) Q$. The following result is part of Proposition 1.10 of [5]; most of the proof, however, is given in the proof of Proposition 2.2 in [4] rather than in [5].

Proposition 2.2. Every nearly n-uniform H -plane E_{n} has the following properties.
(1) $s=r^{n}, t=r^{n-1}$.
(2) If P and Q are distinct points of E_{n}, then $P(\simeq i) Q$ for some nonnegative integer $i<n$.
(3) The dual of (2) holds for intersecting lines.
(4) If P is in g and $i \geqslant 1$, then $|\{Q \in g: Q(\sim i) P\}|=r^{n-i}$.
(5) The dual of (4) holds.

One of the principal results of [4] (Proposition 4.6) asserts that the dual of a "strongly" n-uniform PH-plane is a strongly n-uniform PH-plane. In [14, Satz 1] Törner proves that every nearly n-uniform PH-plane is a strongly n-uniform PHplane; Theorem 2.3 below is an immediate consequence. (An alternative proof is given in [11].)

Theorem 2.3. Every nearly n-uniform PH-plane is n-uniform, and the dual of an n-uniform PH -plane is an n-uniform PH -plane.

Two lines g and h of A_{n} are said to be quasiparallel (and one writes $g \mid h$) if $g^{\phi} \| h^{\phi}$ in A^{\prime}. Then \mid is an equivalence relation which partitions the lines of A_{n} into $r+1$ quasiparallel classes; each such class is the disjoint union of r neighbor classes of lines, hence consists of $r t^{2}$ lines. As observed in [5, p. 202], the condition $g \mid h$ holds if and only if $|g \cap h| \neq 1$. This characterization of the quasiparallel relation makes it easy to prove the following lemma.

Lemma 2.4. Let g, h and P be lines and point of E_{n} such that $g^{\prime}=g \cap(P)$ and $h^{\prime}=h \cap(P)$ are not empty. Then $g \sim h$ if and only if $g^{\prime} \mid h^{\prime}$ in $A(P)$.

3. Preliminary results.

Proposition 3.1. Let Λ be a quasiparallel class of $A_{n}, S \subset \Lambda,|S|<s=r^{n}$. Then there is a set C of points of A_{n} which has the following properties: (1) $|C|=s$; (2) each pair of points of C is joined by a line of Λ; (3) no point of C lies on any line of S.

Proof. For $n=1, \Lambda$ is a parallel class, and C may be taken to be the set of points of any line in $\Lambda \backslash S$. Assume $n>1$, and let $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{r}$ be the r line neighborhoods contained in Λ. If S_{j} denotes $S \cap \Lambda_{j}$ for each j, then $\left|S_{i}\right|<s / r=t$ for some i. We intend to obtain C from the set of points that are incident with lines of Λ_{i}. Let h be a line in $\Lambda_{i} ; P_{1}, P_{2}, \ldots, P_{r}$ be r mutually nonneighbor points on h. For arbitrary fixed j, let $\Lambda^{\prime}=\left\{g^{\prime}: g^{\prime}=g \cap\left(P_{j}\right)\right.$ for some g in $\left.\Lambda_{i}\right\}, S^{\prime}=\left\{g^{\prime}: g^{\prime}=g \cap\left(P_{j}\right)\right.$ for some g in $\left.S_{i}\right\}$. By Lemma $2.4, \Lambda^{\prime}$ is a quasiparallel class of lines in the nearly ($n-1$)-uniform NAH-plane $A\left(P_{j}\right)$: and S^{\prime} is a subset of fewer than $t=r^{n-1}$ lines of Λ^{\prime}. By the induction assumption there is a set $C_{j} \subset\left(P_{j}\right)$ such that (1) $\left|C_{j}\right|=r^{n-1}$; (2) each pair of points of C_{j} is joined by a line of Λ; (3) no point of C_{j} lies on any line of S. We take C to be the union of the C_{j}.

Proposition 3.2. Let g be any line of $H_{n}, N \subset(g),|N|<t$. Then there is a set D of points of H_{n} with the properties: (1) $|D|=s+t$; (2) each pair of points of D is joined by a line of (g); (3) no point of D lies on any line of N.

Proof. Let $P_{0}, P_{1}, \ldots, P_{r}$ be $r+1$ mutually nonneighbor points on g. For fixed $j \geqslant 0$, apply Lemma 2.4 to see that the lines of N induce a subset N^{\prime} of a quasiparallel class of lines in $A\left(P_{j}\right)$. Applying Proposition 3.1 (with $n-1$ instead of n), we obtain a set D_{j} of points of $\left(P_{j}\right)$ such that (1) $\left|D_{j}\right|=t$; (2) each pair of points of D_{j} is joined by a line of $(g) ;(3)$ no point of D_{j} lies on any line N. We now take D to be the union of the D_{j}.

Proposition 3.3. Let S be a set of at most $s+t$ mutually intersecting lines of A_{n} whose union contains every point of A_{n}. Then all lines of S pass through a common point.

Proof. The assertion is easily verified for $n=1$, so assume $n>1$. Let $g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{d}^{\prime}$ be the distinct images in A^{\prime} of the lines of S. Since the g_{i}^{\prime} intersect in $A^{\prime}, d \leqslant r+1$. Then the g_{i}^{\prime} pass through a common point P^{\prime}, and hence the lines of S all contain points from a common neighborhood (P). The number of points of A_{n} not in (P) is $t^{2}\left(r^{2}-1\right)=s^{2}-t^{2}$, and each line of S contains $s-t$ points outside (P). Then every point outside (P) must lie on a single line of S, so every pair of lines of S must intersect in (P). Let g be any line of S. Applying Proposition 2.2(5) with $i=n-1$, one sees that there are $r-1$ other lines h which satisfy $h \cap(P)=g \cap(P)$. Take Q to be any point of $h \backslash(P)$, and let k be a line of S which contains Q. Then k and g intersect in $g \cap(P)=h \cap(P)$. Then $k \cap h$ contains nonneighbor points, so $h=k$ is in S. It follows that the set $S^{*}=\{g \cap(P): g \in S\}$ has cardinality at most $(s+t) / r=r^{n-1}+r^{n-2}$. Applying the induction assumption to $A(P)$, we see that all lines of S^{*} (and therefore all lines of S) meet in a common point.
4. Proofs of the main results. Thanks to Theorem 2.3, it is immaterial whether we prove Theorem 1.2 or its dual. Then let S be a set of $s+t$ or fewer lines of H_{n} whose union contains every point of H_{n}. To complete the proof of Theorem 1.2 it suffices to prove the existence of a point P which lies on all lines of S. We intend to apply Proposition 3.3. To do so, we must remove a neighbor class (h) of lines from H_{n} to
obtain a nearly n-uniform NAH-plane A_{n} (see Proposition 2.1). This must be done so that the intersections of lines of S lie in A_{n}.

For any g in S let N denote $S \cap(g)$. Assume $|N|<t$, and apply Proposition 3.2 to obtain a set D of $s+t$ points. Conditions (2) and (3) of Proposition 3.2 guarantee that the points of D lie on at least $s+t$ lines of $S \backslash(g)$. Since g is in S, we have produced the contradiction $|S|>s+t$. Then $|S \cap(g)|$ must be at least t for every g in S, so S contains lines from at most $(s+t) / t=r+1$ distinct line neighborhoods of H_{n}. Consider the image S^{ϕ} of S in H^{\prime}, and apply the dual of (1.1): one sees that S^{ϕ} is the set of all $r+1$ lines incident with some point Q^{\prime} of H^{\prime}. Then S contains exactly $t(r+1)=s+t$ lines. Let Q be a point of H_{n} with $Q^{\phi}=Q^{\prime}$. The number of flags (R, g) with g in S and $R \nsim Q$ is $(s+t) s=t^{2}\left(r^{2}+r\right)$; i.e., is just the number of points R of H_{n} with $R \nsim Q$. Then every point $R \nsim Q$ lies on a unique line of S, so all intersections of pairs of lines of S lie in (Q). Let h be any line having an empty intersection with (Q). Applying Proposition 3.3 to $A_{n}=A\left(H_{n}, h\right)$ completes the proof of Theorem 1.2.

To prove Theorem 1.1, let r be the order of a projective plane, n be a positive integer. Then there exists an n-uniform PH-plane H_{n} whose associated plane H^{\prime} is of order r : this assertion is Corollary 8 of [6]; it is also the main theorem of [1] if one uses the Bacon result [2] that finite PH-planes of level n are n-uniform. Now Theorem 1.1 follows from Theorem 1.2 in view of Proposition 2.2(1) and the Kleinfeld Counting Lemma.

Acknowledgment. During the writing of this paper, the second author held a visiting position in the Department of Mathematics at the University of Florida.

References

[^1]Department of Mathematics, University of Florida, Gainesville, Florida 32611
Department of Mathematics, University of Bombay, Santacruz (East), Bombay 29AS, India

[^0]: Received by the editors January 18, 1982.
 1980 Mathematics Subject Classification. Primary 05B30; Secondary 05B25, 51E30.
 ${ }^{1}$ Support by the National Science Foundation (grant no. MCS-7903166) is gratefully acknowledged.

[^1]: 1. B. Artmann, Existenz und projektive Limiten von Hjelmslev-Ebenen n-ter Stufe, Atti del Convegno di Geometria Combinatoria e sue Applicazioni, Perugia, 1971, pp. 27-41.
 2. P. Y. Bacon, Strongly n-uniform and level n Hjelmslev planes, Math. Z. 127 (1972), 1-9.
 3. R. T. Craig, Extensions of finite projective planes. I. Uniform Hjelmslev planes, Canad. J. Math. 16 (1964), 261-266.
 4. D. A. Drake, On n-uniform Hjelmslev planes, J. Combin. Theory 9 (1970), 267-288.
 5. \qquad , Existence of parallelisms and projective extensions for strongly n-uniform near affine Hjelmslev planes, Geom. Dedicata 3 (1974), 191-214.
 6. \qquad , Constructions of Hjelmslev planes, J. Geometry 10 (1977), 179-193.
 7. P. Erdös and L. Lovàsz, Problems and results on 3-chromatic hypergraphs and some related questions, Proc. Colloq. Math. Soc. J. Bolyai, no. 10, North-Holland, Amsterdam, 1974, pp. 609-627.
 8. Z. Füredi, On maximal intersecting families of finite sets, J. Combin. Theory Ser. A 28 (1980), 282-289.
 9. E. Kleinfeld, Finite Hjelmslev planes, Illinois J. Math. 3 (1959), 403-407.
 10. W. Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Z. 60 (1954), 384-406.
 11. B. V. Limaye and S. S. Sane, On partial designs and m-uniform projective Hjelmslev planes, J. Combin. Inform. System Sci. 3 (1978), 223-237.
 12. H. Lüneburg, Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe, Math. Z. 79 (1962), 260-288.
 13. \qquad , Kombinatorik, Birkhäuser Verlag, Basel, 1971.
 14. G. Törner, n-uniforme projektive Hjelmslev-Ebenen sind stark n-uniform, Geom. Dedicata 6 (1977), 291-295.
