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MAXIMAL INTERSECTING FAMILIES OF FINITE SETS
AND n-UNIFORM HJELMSLEV PLANES

DAVID A. DRAKE' AND SHARAD S. SANE

ABSTRACT. The following theorem is proved. The collection of lines of an n-uniform
projective Hjelmslev plane is maximal when considered as a collectiion of mutually
intersecting sets of equal cardinality.

1. Introduction. A clique of k-sets is a collection of mutually intersecting sets of
size k. We write N(k) to denote the minimum cardinality of a maximal clique of
k-sets. Apparently the exact value of N(k) is known only for very small values of k.
However, Erdos and Lovasz [7] have obtained the asymptotic lower bound N(k) =
(8k/3) — 3; and Fiiredi [8, p. 283] writes that he can prove N(k) < k/*) where
f(k) = ck/12.

For particular values of k, the preceding upper bound can be greatly sharpened. It
is easily proved, for example, that

(1.1) a projective plane of order r is a maximal clique. Consequently

(1.2) N(r + 1) < r? + r + 1 whenever r is the order of a projective plane.

In addition Fiiredi has proved the following two theorems (Proposition 1 and
Theorem 1 in [8]). (Fiiredi informs us that (1.3) is joint work with L. Babai.)

(1.3) N(r? + r) < r*+ r3 + r? whenever r is the order of a projective plane.

(1.4) N(2r) < 3r? whenever r is the order of a projective plane.

In this paper we obtain the following common generalization of (1.2) and (1.3).

THEOREM 1.1. If r is the order of a finite projective plane, then N(r" + r"~ ') < r2"
+ r2"=' 4+ 2772 for every positive integer n.

Fiiredi proves (1.3) by constructing a 2-uniform projective Hjelmslev plane over
an arbitrary finite projective plane and then observing that such Hjelmslev planes
are maximal cliques. Henceforth we write PH-plane for projective Hjelmslev plane.
The more difficult of the two steps in the Fiiredi program is the PH-plane
construction, a construction which has been discovered independently by Fiiredi [8]
and Craig [3] (see also Liineburg [13]). Since the class of 1-uniform PH-planes is by
definition just the class of finite projective planes, conclusions (1.2) and (1.3) both
follow by observing that the line set of every n-uniform PH-plane with n = 1 or 2 is
a maximal clique. Similarly we shall obtain Theorem 1.1 as a corollary to the
following result.
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THEOREM 1.2. The line set of every ( finite) n-uniform projective Hjelmslev plane is a
maximal clique.

The contribution of this paper is to prove Theorem 1.2. The other step, that of
establishing the existence of n-uniform PH-planes over arbitrary projective planes,
has already been completed: first by Artmann [1] and later by Drake [6] who used a
different construction.

If k can be represented both as r™ + r™~! and as s” + s”~! with m <p, one
should apply Theorem 1.1 with n = p to obtain the sharper bound. Unfortunately
such double representations occur for prime powers r and s only when m = 1 and in
the case 2> + 22 = 32 + 3 = 11 + 1. In the latter case one obtains N(12) < 133 by
using (1.2), N(12) < 117 by using the Fiiredi result (1.3), and N(12) < 112 by using
Theorem 1.1 with n = 3. The real value of Theorem 1.1, of course, is that variation
in n allows one to obtain a bound for N(k) for new values of k.

2. Prerequisites. We refer the reader to [5, pp. 192-197] for background material
that includes the definitions of PH-planes and NAH-planes (near affine Hjelmslev
planes). We repeat here some of the material from the cited pages, however, because
the conclusions of this paper will interest a number of mathematicians without
previous knowledge of Hjelmslev planes. We use the designation H-planes to refer
collectively to NAH- and PH-planes.

To every H-plane E is associated a canonical (incidence-structure) epimorphism
¢: E - E’ where E’ is a projective plane if E is a PH-plane and an affine plane if E
is an NAH-plane. Points P and Q (lines g and %) are called neighbors, and one writes
P ~ Q (g~ h), if and only if P* = Q% (g? = h*). One writes = for the negation of
~ . Intersecting lines g and h satisfy g ~ h if and only if |g N h|> 1. We write (P)
to denote the set {Q: Q ~ P} and (g) to denote the set {h: h ~ g}. The following
result was proved by Klingenberg [10, Satz 3.6]. (See also the remarks on page 260 of

[12].)

PROPOSITION 2.1. Let the incidence structure A = A(H, h) be obtained from a
PH-plane H by removing a neighbor class (h) of lines as well as all points of H which
are incident with lines of (h). Then A is an NAH-plane.

To each finite H-plane E are associated three integers denoted by r, s and ¢. For
any flag (P, g) the integer ¢ is the number of lines & through P which satisfy » ~ g
(as well as the number of points Q on g that satisfy Q ~ P); |(P)|=|(g)|=t%
s + ¢t is the number of lines incident with P; and r is the order of E’. Every line
contains s + ¢ points if E is a PH-plane, s points if E is an NAH-plane. The equality
s = rt holds for all H-planes. The preceding properties of r, s and ¢ were first noted
(for PH-planes only) by Kleinfeld [9]. Accordingly we shall designate this collection
of properties the Kleinfeld Counting Lemma.

A nearly 1-uniform PH-plane (NAH-plane) is a finite projective plane (finite affine
plane). For n > 1 a finite H-plane E (of either type) is called nearly n-uniform if, for
every point P, (1) E induces an incidence structure A(P) on (P) which is a nearly
(n — 1)-uniform NAH-plane, (2) every line of A(P) is induced by d lines of E for
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some fixed integer d. Proposition 1.10(11) of [5] asserts that d =r. A nearly
n-uniform H-plane is said to be n-uniform if every A(P) is an (n — 1)-uniform
NAH-plane with a “parallelism,” but the reader will not need to understand this
notion.

We now establish some conventions. All H-planes in this paper are assumed to be
nearly n-uniform for some n. The symbols E,, H, and 4, denote a nearly n-uniform
H-, PH- and NAH-plane, respectively, with E’, H’ and A’ as the respective
underlying planes. In all cases the order of the underlying plane is assumed to be r.

One writes P(= i) Q to mean that P and Q are joined by precisely r’ lines for
0 <i<nand P(= n)Q to mean that P = Q. One writes P(~ i) Q if P(=j)Q for
some j = i. The negation of P(~ i) Q is denoted by P (~ i) Q. The following result
is part of Proposition 1.10 of [S]; most of the proof, however, is given in the proof of
Proposition 2.2 in [4] rather than in [S].

PROPOSITION 2.2. Every nearly n-uniform H-plane E, has the following properties.

Ds=r"t=r""1

(2) If P and Q are distinct points of E,,, then P (= i) Q for some nonnegative integer
i<n.

(3) The dual of (2) holds for intersecting lines.

@ IfPisingandi=1,then|{Q € g: Q(~i)P}|=r"""

(5) The dual of (4) holds.

One of the principal results of [4] (Proposition 4.6) asserts that the dual of a
“strongly” n-uniform PH-plane is a strongly n-uniform PH-plane. In [14, Satz 1]
Torner proves that every nearly n-uniform PH-plane is a strongly n-uniform PH-
plane; Theorem 2.3 below is an immediate consequence. (An alternative proof is
given in [11].) :

THEOREM 2.3. Every nearly n-uniform PH-plane is n-uniform, and the dual of an
n-uniform PH-plane is an n-uniform PH-plane.

Two lines g and 4 of A, are said to be quasiparallel (and one writes g | h) if g* || h*
in A’. Then | is an equivalence relation which partitions the lines of 4, into r + 1
quasiparallel classes; each such class is the disjoint union of r neighbor classes of
lines, hence consists of r¢? lines. As observed in [5, p. 202], the condition g | 4 holds if
and only if | g N k| 1. This characterization of the quasiparallel relation makes it
easy to prove the following lemma.

LEMMA 2.4. Let g, h and P be lines and point of E, such that g’ = g N (P) and
h’ = h N (P) are not empty. Then g ~ h if and only if g’ | h’ in A(P).

3. Preliminary results.

PROPOSITION 3.1. Let A be a quasiparallel class of A,, S C A, |S|<s=r". Then
there is a set C of points of A, which has the following properties: (1) | C|= s; (2) each
pair of points of C is joined by a line of A; (3) no point of C lies on any line of S.
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PRrROOF. For n = 1, A is a parallel class, and C may be taken to be the set of points
of any line in A\S. Assume n > 1, and let A, A,,...,A, be the r line neighbor-
hoods contained in A. If S; denotes S N A for each j, then | S;|<s/r = t for some
i. We intend to obtain C from the set of points that are incident with lines of A ;. Let
hbealinein A; P, P,,...,P, be r mutually nonneighbor points on k. For arbitrary
fixed j, let A" = {g": g’ = g N (P,) for some gin A;}, §" = {g": g’ = g N (P)) for
some g in S;}. By Lemma 2.4, A’ is a quasiparallel class of lines in the nearly
(n — D)-uniform NAH-plane 4(P,): and S’ is a subset of fewer than ¢t = r"! lines
of A’. By the induction assumption there is a set C; C (P;) such that (1) | Gl=r"" I
(2) each pair of points of C, is joined by a line of A; (3) no point of C, lies on any
line of S. We take C to be the union of the C,.

PROPOSITION 3.2. Let g be any line of H,, N C (g), | N|< t. Then there is a set D of
points of H, with the properties: (1) | D |= s + t; (2) each pair of points of D is joined
by a line of (g); (3) no point of D lies on any line of N.

PROOF. Let Py, P,,...,P, be r + 1 mutually nonneighbor points on g. For fixed
j =0, apply Lemma 2.4 to see that the lines of N induce a subset N’ of a
quasiparallel class of lines in A(P;). Applying Proposition 3.1 (with n — 1 instead of
n), we obtain a set D; of points of (P;) such that (1) | D;|= ¢; (2) each pair of points
of D; is joined by a line of (g); (3) no point of D, lies on any line N. We now take D
to be the union of the D;.

PROPOSITION 3.3. Let S be a set of at most s + t mutually intersecting lines of A,
whose union contains every point of A,. Then all lines of S pass through a common
point.

PROOF. The assertion is easily verified for n = 1, so assumen > 1. Let g1, g3,...,85
be the distinct images in A’ of the lines of S. Since the g/ intersect in A’, d<r + 1.
Then the g/ pass through a common point P’, and hence the lines of S all contain
points from a common neighborhood (P). The number of points of 4, not in (P) is
t3(r> — 1) = s* — 2, and each line of S contains s — ¢ points outside (P). Then
every point outside (P) must lie on a single line of S, so every pair of lines of S must
intersect in (P). Let g be any line of S. Applying Proposition 2.2(5) withi =n — 1,
one sees that there are r — 1 other lines 4 which satisfy # N (P) = g N (P). Take Q
to be any point of A\ (P), and let k be a line of S which contains Q. Then k and g
intersect in g N (P) = h N (P). Then k N h contains nonneighbor points, so A = k
is in S. It follows that the set $* = {g N (P): g € S} has cardinality at most
(s +1t)/r=r"""+ r""2 Applying the induction assumption to A(P), we see that
all lines of S* (and therefore all lines of S) meet in a common point.

4. Proofs of the main results. Thanks to Theorem 2.3, it is immaterial whether we
prove Theorem 1.2 or its dual. Then let S be a set of s + ¢ or fewer lines of H, whose
union contains every point of H,. To complete the proof of Theorem 1.2 it suffices
to prove the existence of a point P which lies on all lines of S. We intend to apply
Proposition 3.3. To do so, we must remove a neighbor class (#) of lines from H, to
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obtain a nearly n-uniform NAH-plane 4, (see Proposition 2.1). This must be done
so that the intersections of lines of S lie in 4,,.

For any g in S let N denote S N (g). Assume | N |< ¢, and apply Proposition 3.2
to obtain a set D of s + ¢ points. Conditions (2) and (3) of Proposition 3.2 guarantee
that the points of D lie on at least s + ¢ lines of S\(g). Since g is in S, we have
produced the contradiction | S |> s + . Then | S N (g)| must be at least ¢ for every
g in S, so S contains lines from at most (s + ¢)/t = r + 1 distinct line neighbor-
hoods of H,,. Consider the image S? of S in H’, and apply the dual of (1.1): one sees
that S? is the set of all r + 1 lines incident with some point Q' of H’. Then S
contains exactly #(r + 1) = s + ¢ lines. Let Q be a point of H, with Q¢ = Q’. The
number of flags (R, g) with gin S and R = Q is (s + t)s = t2(r? + r); i.e., is just
the number of points R of H, with R = Q. Then every point R = Q lies on a unique
line of S, so all intersections of pairs of lines of S lie in (Q). Let & be any line having
an empty intersection with (Q). Applying Proposition 3.3 to 4, = A(H,, h) com-
pletes the proof of Theorem 1.2.

To prove Theorem 1.1, let r be the order of a projective plane, n be a positive
integer. Then there exists an n-uniform PH-plane H, whose associated plane H' is of
order r: this assertion is Corollary 8 of [6]; it is also the main theorem of [1] if one
uses the Bacon result [2] that finite PH-planes of level n are n-uniform. Now
Theorem 1.1 follows from Theorem 1.2 in view of Proposition 2.2(1) and the
Kleinfeld Counting Lemma.
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